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A B S T R A C T   

Bladder cancer (BC) is frequent cancer affecting the urinary tract and is one of the most prevalent malignancies 
worldwide. No biomarkers that can be used for effective monitoring of therapeutic interventions for this cancer 
have been identified to date. This study investigated polar metabolite profiles in urine samples from 100 BC 
patients and 100 normal controls (NCs) using nuclear magnetic resonance (NMR) and two methods of high- 
resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS). Five urine metabolites 
were identified and quantified using NMR spectroscopy to be potential indicators of bladder cancer. Twenty-five 
LDI-MS-detected compounds, predominantly peptides and lipids, distinguished urine samples from BC and NCs 
individuals. Level changes of three characteristic urine metabolites enabled BC tumor grades to be distinguished, 
and ten metabolites were reported to correlate with tumor stages. Receiver-Operating Characteristics analysis 
showed high predictive power for all three types of metabolomics data, with the area under the curve (AUC) 
values greater than 0.87. These findings suggest that metabolite markers identified in this study may be useful for 
the non-invasive detection and monitoring of bladder cancer stages and grades.   

1. Introduction 

Over the past decades, cancer mortality has been increasing. Ac-
cording to GLOBOCAN 2020, the number of new cancer cases diagnosed 
in 2020 will be 19.3 million, with over 10.0 million dying as a result of 
cancer [1]. Bladder cancer (BC) remains one of the most common types 
of cancer worldwide, and the most common malignancy of the urinary 
tract [1]. The scale of the problem is so high that, in 2020, nearly 200, 
000 people died of bladder cancer and three times more suffered from 
the disease [1]. This type of cancer is also more common in men. To 
date, data indicate that BC in females are 70% less frequent than in 
males, and among male and female BC patients, the mortality rate is 
reduced by one-third in females compared to males [2]. The increasing 
incidence and high mortality rate due to bladder cancer is a significant 
burden on health systems worldwide [3]. 

Another challenge is the high frequency of disease recurrence and 
recurrent progression following transurethral resection. This challenge 
is compounded by the high costs of cystoscopy examinations which are 
needed for early detection and to monitor BC patients following cancer 

treatment. Moreover, early detection of the disease depends signifi-
cantly on the knowledge and experience of the pathologist, especially in 
the case of early stages of BC, which may not be readily apparent in 
cystoscopic examination [4]. Early detection has another advantage, as 
it reduces health care costs compared to the costs of treating BC patients 
in the advanced stages of the disease. 

Currently, the primary methods to detect BC include urine cytology, 
cystoscopy, biopsy, and computed tomography, all displaying low 
sensitivity for cancer detection. Based on worldwide reports, the most 
common symptoms of BC involve hematuria, pain and burning, painful 
frequent urination, feeling of an incompletely empty bladder. Cystos-
copy is the most common detection method for patients suffering from 
these conditions. Given the invasive character of these procedures, there 
exists a strong need for less aggressive and more quantitative approaches 
to detect, diagnose, and monitor disease progression of bladder cancer 
[5]. 

Fortunately, research activities aimed at identifying new biomarkers 
of BC have increased recently [6]. The Food and Drugs Administration 
has approved a few biomarker kits for disease detection so far, which 
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consist mainly of protein detection [7]. Regrettably, due to the high 
costs of identifying these markers in new patients and the relatively low 
predictable power for BC, none of these approved kits have been 
employed for general use, despite the fact that some of them are used to 
monitor the recurrence of bladder cancer, including the UroVysion 
bladder cancer kit. The problem is compounded by the fact that many of 
procedures needed to identify these protein markers are cumbersome 
and difficult to use in the clinic [8]. In addition, identification and 
quantification of these recently approved BC protein markers require 
sophisticated instrumentation which is not readily available to most 
clinicians. Due to growing knowledge in the field of oncology, many 
studies have focused on biomarker discovery to facilitate the diagnosis, 
screening, and follow-up of communities susceptible to bladder cancer 
[4]. 

Metabolomics is part of the field of systems biology, which aims to 
characterize metabolic changes at a global level, and to inform on 
metabolome changes, i.e., small molecule profiles, of complex organ-
isms underlying their cellular phenotypes [9]. Metabolomics studies on 
human subjects focus primarily of metabolites measured in body fluids 
or extracted from cells or tissues. The development and progression of 
many types of cancer is reflected in changes of the metabolomes 
analyzed from human biospecimens, including urine and serum [10]. In 
cases of BC, the most useful analyses may be from the analysis of urine. 
Although urine metabolomics may be influenced by dilution, it is more 
readily available and non-invasive than serum or tissue analysis. [11]. In 
recent years, numerous comprehensive reviews have been published 
that provide detailed information on the various metabolomics ap-
proaches utilized for the detection and identification of biomarkers in 
bladder cancer [12–15]. However, none of the identified biomarkers to 
date can ensure 100% detection of cancer at an early stage, and their 
high detection characteristics come with a substantial cost that global 
health services cannot afford. Nonetheless, scientists should continue 
researching new biomarkers to increase the proportion of early bladder 
cancer detection cases. 

Most metabolomics studies of BC patient urine samples have used 
non-targeted approaches including gas chromatography (GC)- or liquid 
chromatography (LC)- coupled MS [16–19]. Only few of these studies 
have used NMR [20,21] approaches. 

In 2010, one of the initial reports on metabolomic profiling of urine 
from patients with BC using NMR was published [20]. The research 
included samples from 33 non-muscle invasive BC patients, 31 in-
dividuals with benign conditions such as urinary tract infection, 2 with 
bladder stones, and 37 healthy individuals. The study identified five 
metabolites including citrate, dimethylamine, phenylalanine, taurine 
and hippurate that specifically reflected biochemical changes in cancer 
cell metabolism. The findings suggested that NMR-based urine analysis 
had the potential to serve as a non-invasive early detection test for a 
range of pathological conditions, including BC. Another NMR-based 
study was published in 2019 that focused on urine and tissue 
profiling. [21]. The study analyzed urine samples collected from 35 
patients before and after transurethral resection. The results showed a 
correlation between taurine and other amino acid metabolic pathways 
perturbed in bladder cancer tissue samples and those observed in the 
urine samples. 

There are many publications in the literature regarding the untar-
geted analysis of urine extracts using mass spectrometry to identify 
potential small-molecule biomarkers for early detection of BC [16, 
22–24]. However, to date, only two papers have been published that 
include a large group of more than one-hundred patients and have un-
dergone external validation [18,25]. Additionally, there is a limited 
number of reports on the analysis of urine from patients with BC, taking 
into account the division into different stages and grades of cancer, as 
well as gender and age [26,27]. 

To the best of our knowledge, there are currently no published 
metabolomics studies that have employed both NMR and laser desorp-
tion/ionization mass spectrometry (LDI-MS) to analyze the metabolite 

profiles of urine samples of BC patients. NMR provides information 
about the molecular structure of metabolites and can identify a wide 
range of metabolites with high accuracy and reproducibility with easy 
and reliable quantification. On the other hand, LDI-MS provides com-
plementary information to NMR as it is much more sensitive and can 
detect a wider range of metabolites. In addition, the use of silver 
nanoparticles (AgNPs) in laser desorption/ionization mass spectrometry 
(LDI-MS) has been reported to enhance the detection of lipids. AgNPs 
can interact with the lipid molecules in the sample, increasing their 
ionization efficiency and sensitivity. By combining these two tech-
niques, the study can obtain a more comprehensive view of the metab-
olite profile of BC patients’ urine samples. This can provide a more 
accurate and detailed understanding of the metabolic changes associ-
ated with BC, which can lead to the development of more specific and 
sensitive biomarkers for early detection, diagnosis, and treatment of BC 
[28,29]. 

Herein, we report results from targeted and non-targeted metab-
olomics analyses of 199 urine samples acquired from 99 patients diag-
nosed with BC and 100 healthy controls. This study successfully 
identified specific alterations in the urine metabolomes of BC patients 
compared to those of control individuals. In addition, metabolite profile 
changes were found to be informative reporters of the stage and grade of 
bladder cancer. This study was conducted using high-resolution 1H NMR 
and two laser desorption/ionization mass spectrometry (LDI-MS) tech-
niques, and resulting data were validated using both multivariate and 
univariate statistical analyses. 

2. Materials and methods 

2.1. Materials and equipment 

All solvents were of high quality ‘LC-MS’ grade and purchased from 
Sigma Aldrich (St. Louis, MO, USA). Deuterium oxide (D2O) and DSS 
(4,4-dimethyl-4-silapentane-1-sulfonic acid) were purchased from 
Sigma Inc. (Boston, MA, USA). 

2.2. Collection of human urine samples 

Urine samples were collected from BC patients and normal controls 
at Kolbuszowa’s John Paul II Hospital (Poland). NMR and MS metabolite 
profile datasets collected on cancer and control urine samples were each 
randomly divided into two groups for analysis. The two groups consisted 
of a training set which included 70% of the data (either NMR or MS), and 
a validation set which included the remaining 30% of the data. 
Following detailed clinical questioning and laboratory testing, all pa-
tients underwent transurethral resection of bladder tumor (TURBT). The 
study was approved by the local Bioethics Committee (permission no. 
2018/04/10). A little more than half of the patients (n = 54) displayed 
low-grade bladder cancer and papillary urothelial neoplasm of low 
malignant potential (PUNLMP) (n = 3), while the remaining patients (n 
= 41) had high-grade disease. Both high- and low-grade neoplasms were 
found in two cases. Most of these patients (n = 69) had noninvasive 
papillary carcinomas (pathologic stage Ta, pTa), 19 had submucosal 
invasive tumors (pathologic stage T1, pT1), and 12 had muscle invasive 
bladder cancer (pathologic stage T2, pT2). The average age of diagnosed 
BC patients was 74 ± 10 years, while the average age of NCs was 64 ±
12. Each participant provided 10 ml of urine which was stored at − 60oC 
until further use. The sample collection period extended from October 
2020 to November 2021. Subsequently, in December 2021, NMR and 
MS measurements were performed on the collected urine samples.  
Table 1 and table S1 in supplementary data provides an overview of the 
clinical characteristics of the patients included in the study. 

2.3. Analysis of tissue samples 

Urine extracts were analyzed using high-resolution 1H NMR and gold 
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and silver-109 nanoparticle-based laser desorption/ionization mass 
spectrometry (AuNPs- and 109AgNPs-LDI-MS). Gold and silver-109 
nanoparticles (AuNPs and 109AgNPs) were generated with pulsed fiber 
laser (PFL) 2D galvoscanner (2D GS) laser synthesis in solution/sus-
pension (LASiS) as described in our previous publication [30]. Supple-
mentary data detail the acquisition and processing of NMR and MS 
spectra (S1-S4). 

2.4. Preparation of urine metabolite extracts for 1H NMR metabolomics 

As stated in our recent publication (and detailed in the Supplemen-
tary data), metabolites whose polarity ranged from medium-to-high 
were analyzed from urine samples (Supplementary data, section S1) 
[31–33]. 

2.5. Preparation of urine samples for LDI-MS studies 

Thawed urine samples were diluted in methanol 500 times (v/v). 

After that, 0.3 µl volumes were directly placed on target plates: 109Ag 
and Au PFL-2D GS LASiS [30]. Following solvent evaporation in air, the 
Autoflex Speed apparatus was used to measure the plates containing the 
samples. 

2.6. Data processing and spectral acquisition 

A comprehensive explanation of the acquisition and processing of 
NMR and MS spectra can be found in the supplementary material, spe-
cifically in sections S2 to S4. 

2.7. Multivariate statistical analysis 

MetaboAnalyst version 5.0 online software was used to analyze all 
metabolite datasets [34]. The statistical multivariate analysis used here 
is similar to the one described in our recent publications [27,32,35]. 
Briefly the metabolite data obtained from each analytical technique was 
log-transformed and auto-scaled. The resulting metabolite profiles were 
then subjected to unsupervised Principal Component Analysis (PCA) and 
Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). To 
identify metabolites that differentiated between the groups, we utilized 
a comprehensive approach. Specifically, we applied (i) variable impor-
tance in projection (VIP) from OPLS-DA model (VIP > 1.0), (ii) 
two-sample t-tests & Wilcoxon Rank-Sum Tests with Mann-Whitney and 
Bonferroni correction (FDR < 0.05, p-values < 0.05), (iii) fold change 
(FC) analysis (FC > 2.0 or < 0.5), and (iv) area under the curve (AUC) 
receiver operating characteristics (ROC) analysis with random forest 
modeling (AUC > 0.7). Subsequently, we validated the potential bio-
markers meeting these criteria in an independent cohort (validation set) 
to confirm their reproducibility. In the validation set, we used the same 
statistical criteria as in the training set to test for significance. Impor-
tantly, the potential biomarkers that were significant in the training set 
were also significant in the validation set, confirming their reproduc-
ibility. To test the robustness and avoid overfitting of the OPLS-DA 
model we performed random permutation analysis with 2000 repeats 
and 7-fold cross-validation. The overall performance of the OPLS-DA 
model was assessed by evaluating the goodness of ft (R2Y) and the 
predictive ability of the model (Q2). A metabolic pathway impact 
analysis was performed using MetaboAnalyst version 5.0 [34] and the 
Kyoto Encyclopedia of Genes and Genomes [36] to identify metabolic 
pathways that are in all likelihood impacted by bladder cancer. One-way 
analysis of variance (ANOVA) was used to compare differences between 
different stages and grades of BC, with Tukey’s post-hoc testing used if 
the ANOVA revealed significant differences. MS and NMR data were 
analyzed using the same statistical method. 

3. Results 

In this work, the urine metabolite profiles of BC patients were 
examined to identify urine-specific metabolic indicators of BC. The 
study involved 100 patients diagnosed with BC and 100 patients in 
whom urinary tract cancers were excluded. However, data from 99 urine 
samples from BC patients were used for the statistical analysis of the 
NMR results. For one sample, readable NMR spectra could not be ob-
tained. With the much more sensitive laser desorption/ionization mass 
spectrometry (LDI-MS), this was no longer a problem and data from all 
100 BC samples were included in the statistical analysis. In this case 400 
of LDI-MS spectra were collected using 109Ag and Au PFL-2D GS LASiS 
targets. 

3.1. Differentiation between BC and control urine based on 1H NMR data 

Urine metabolites from patients with BC (99 samples) and controls 
(100 samples) were analyzed using high-resolution 1D 1H NMR. Alto-
gether, 39 metabolites were identified and quantified in each urine 
sample following published protocols [31]. Fig. 1 depicts an overlay of 

Table 1 
Participant characteristics.   

BC Control 

Training Validation Training Validation 

Number     
General 69 30 70 30 
Male 54 26 46 24 
Female 15 4 24 6 
Age (mean/SD) 71(9) 74(11) 60(14) 62(12) 
Gradea     

High grade 30 11 - - 
Low grade 34 19 - - 
LG (70%) and HG (30%) 1 - - - 
LG (85%) and HG (15%) 1 - - - 
PUNLMP 3 - - - 
Stage     
pT1 13 6 - - 
pT2 9 3 - - 
pTa 47 21 - - 
Type of surgery     
TURBT 68 29 - - 
Cystectomy 1 1 - - 
Tumor origin     
Primary 41 15 - - 
Recurrent 28 15 - - 
Hematuria     
At diagnosis 68 30 - - 
At sampling 44 26 - - 
Tumor size     
< 1 7 0 - - 
2–3 27 18 - - 
> 3 14 7 - - 
Multifocal/flat 11/2 5/0 - - 
Multifocality     
0 1 0 - - 
1 47 21 - - 
2–3 8 3 - - 
> 3 13 7 - - 
Previous treatment     
BCG 10 4 - - 
Tumor histology     
Papillary 67 29 - - 
Concomitant CIS 1 0 - - 
Solid, non-papillary 1 1 - - 
Tobacco smoking     
Non smoking 47 25 - - 
Currently smoking 12 2 - - 
Prevoius smoking 9 3 - - 

a Tumors were classified according World Health Organization (WHO)/Inter-
national Society of Urological Pathology (ISUP) classification criteria; BC – 
bladder cancer; LG – low-grade; HG – high-grade; PUNLMP - papillary urothelial 
neoplasm of low malignant potential; pT1 and pTa – high risk non-muscle 
invasive bladder cancer; pT2 – muscle invasive bladder cancer; pT- the stage 
has been based on pathological or microscopic findings; SD: standard deviation. 
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NMR spectra of controls and cancer samples. Detailed analysis of the 
NMR spectra revealed significant differences in metabolite levels be-
tween BC and NCs urine samples. 

NMR datasets were randomly divided into two subsets: a training 
data set to train a model (n = 69 BC and n = 70 NCs) and a validation 
data set to assess the validity and robustness of the learned model 

Fig. 1. . 1D 1H NMR spectra of Human Urine 
Metabolite Mixtures. (A) Representative 1D 1H 
NMR spectrum of urine metabolites obtained 
from a bladder cancer (BC) patient and recor-
ded on a 600 MHz (14 Tesla) solution NMR 
spectrometer. The NMR signals of metabolites 
whose levels differ significantly and separate 
the BC patient group from the healthy (normal) 
control group in PLS-DA scores plots (i.e., VIP 
scores > 1) are labeled. Overlays of the 1D 1H 
NMR spectra from BC patient urine samples 
(blue) and control urine samples (black) are 
shown in (B) for the chemical shift region 
9.15–9.07 ppm, which includes the NMR sig-
nals of trigonelline, (C) for the chemical shift 
region 7.57–7.51 ppm corresponding to hippu-
rate, and (D) for the chemical shift region 
5.95–5.55 ppm corresponding to urea. The 
intensity-normalized spectral overlays clearly 
indicate that the concentrations of these me-
tabolites are lower in the urine metabolite 
profiles of BC patients compared to healthy 
controls.   

Fig. 2. Cancer and control urine metabolite profiles obtained from 1H NMR data distinguish BC and NCs samples in the training set. (A,B) The tumor (violet) and 
control (orange) urine samples were evaluated using (A) 2D PCA, and (B) OPLS-DA scores. (C) ROC curves of five distinct metabolites: trigonelline, hippurate, urea, 
mannitol and 4-hydroxyphenylacetate. (D-H) Box-whisker plots of selected metabolites levels in urine samples from NCs and BCs. AUC: area under the curve; PC: 
primary component; ROC: the receiver operator characteristic. 
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(n = 30 BC and n = 30 NCs). Metabolite concentrations from both 
groups were statistically analyzed to assess whether differences in 
metabolite levels between the patient and control groups were signifi-
cant. Findings from this analysis are reported in Supplementary data 
Tables S2 and S3. 2D PCA score plots from both subsets of data revealed 
a clear distinction between BC and NC patient groups. In the training set, 
the best group separation was observed along principal components 1 
and 2 (i.e., PC1 and PC2), which accounted for 41.3% and 7.5% of the 
variance, respectively (Fig. 2 A). Separation of cancer and control urine 
samples was also observed in validation set, with PC1 and PC2 ac-
counting for 44.6% and 6.5% of the variance, respectively (Fig. S1A). 
Fig. 2B and S1B (Supplementary data) show the corresponding 3D PCA 
plots for the training and validation sets, respectively. Next, a supervised 
OPLS-DA analysis was performed to investigate the extent of the meta-
bolic differences between the BC and NC groups in both the training 
(Fig. 2 C) and validation (Fig. S1C) data sets. Resulting score plots 
indicated significant separate clustering of the two groups in the OPLS- 
DA modeling conducted using both the training and validation data sets. 
To evaluate the statistical robustness of the OPLS-DA modeling, two 
thousand permutation tests were performed (Fig. S2). In the training set, 
good discrimination was detected between the two groups (Q2 =0.633, 
R2Y=0.728, P-value 5E-04 (0/2000)), revealing substantial differences 
in the metabolic profiles of BC versus NC urine samples (Fig. S2A, 
Supplementary data). The permutation test validated that the group 
separations observed in the OPLS-DA modeling of the validation NMR 
metabolite dataset is not overfit (Q2 =0.412, R2Y=0.603, P-value 5E-04 
(0/2000)) (Fig. S2 C, Supplementary data). 

Area under the curve AUROC analysis was performed on both the 
training and validation data sets to assess the diagnostic performance of 

the OPLS-DA models, together with the examination of VIP plots 
resulting from the OPLS-DA modeling. These analyses were used to 
identify potential urine metabolite biomarkers of bladder cancer. Next, 
to examine the statistical significance of metabolite level differences, the 
paired parametric t-test with Mann-Whitney and Bonferroni correction 
was utilized. Fifteen urine metabolites were found to be significant 
discriminators of BC versus NC, and were identified from a combined 
analysis of VIP scores (> 1.0), t-tests (FDR corrected p-values < 0.05), 
and area under the curve ROC analysis (AUC > 0.7) of training set 
metabolite data (Table 2, Supplementary data). In turn, sixteen metab-
olites were deemed significant from a similar analysis of the validation 
data set (Supplementary data, Table S2). In both the training and vali-
dation sets, these analyses revealed twelve metabolites that were 
consistently found to be significant discriminators of the BC versus NC 
groups. Finally, 5 metabolites were identified as being statistically sig-
nificant based on fold change ratios greater than 2 or less than 0.5. These 
included trigonelline, hippurate, urea, mannitol and 4-hydroxyphenyla-
cetate. The diagnostic value of these five identified metabolites was 
evaluated using receiver operating characteristic curve (ROC) analyses 
and random forest modeling. The classification ROC model, (Fig. 2E and 
Supplementary data Fig. S1E) indicated that including these five me-
tabolites was a good discriminator (AUC > 0.828) of the two groups in 
both data sets. The ROC model was validated (See Supplementary data 
Fig. S3) and a permutation test using 1000 permutation steps provided a 
p-value of 0.009, supporting the validity of the ROC analysis. The best 
ROC analyses with the highest significance (AUC > 0.8) were obtained 
in the training set for trigonelline (AUC = 0.887, specificity = 75%, and 
sensitivity = 80%), urea (AUC = 0.858, specificity = 86, and sensitivity 
= 80), mannitol (AUC = 0.806, specificity = 84, and sensitivity = 69) 

Table 2 
Results of targeted quantitative study of potential BC biomarkers derived from 1H NMR data of urine samples (P-value 0.05; VIP > 1.0; AUC > 0.70, FC > 2.0 or < 0.5).  

Comparison mode Metabolite VIPa P-valueb FDRb FCc AUC Spec. [%]d Sens. [%]d 

BC 
vs. 
NCs 

4-Hydroxyphenylacetate  1.57 5.32E-10 5.45E-09  0.485  0.805  72  80 
Hippurate  1.59 4.03E-09 2.75E-08  0.360  0.789  81  67 
Mannitol  1.46 4.53E-10 5.45E-09  0.238  0.807  84  69 
Trigonelline  2.09 3.28E-15 1.34E-13  0.196  0.887  75  89 
Urea  1.62 3.41E-13 6.98E-12  0.390  0.858  86  80 

HG BC 
vs. 
NCs 

Trigonelline  1.88 6.74E-10 2.76E-08  0.179  0.897  81  79 
Hippurate  1.37 1.46E-05 5.43E-05  0.342  0.779  67  76 
Mannitol  1.29 1.10E-06 9.05E-06  0.222  0.813  80  72 

LG BC 
vs. 
NCs 

Trigonelline  1.94 6.53E-10 2.68E-08  0.226  0.869  88  75 
Hippurate  1.55 2.58E-06 1.76E-05  0.400  0.781  71  81 
Mannitol  1.41 1.21E-06 1.24E-05  0.254  0.790  68  83 

pTa BC 
vs. 
NCs 

Trigonelline  1.98 9.37E-12 3.84E-10  0.234  0.872  88  77 
4-Hydroxyphenylacetate  1.56 8.79E-08 8.02E-07  0.499  0.792  80  71 
Hippurate  1.56 2.76E-07 1.61E-06  0.395  0.780  68  81 
Mannitol  1.45 9.74E-09 1.33E-07  0.228  0.813  68  85 
1-Methylhistidine  1.41 9.79E-08 8.02E-07  0.494  0.791  71  79 
Creatine  1.28 1.07E-06 4.37E-06  0.476  0.766  75  73 

pT1 BC 
vs. NCs 

Trigonelline  1.85 7.61E-09 3.12E-07  0.130  0.920  91  84 
1,3-Dimethylurate  1.66 1.08E-07 2.22E-06  0.210  0.886  81  90 
Urea  1.59 2.09E-07 2.86E-06  0.455  0.877  82  79 
Hippurate  1.52 1.81E-06 1.48E-05  0.248  0.847  79  79 
4-Hydroxyphenylacetate  1.43 1.74E-06 1.48E-05  0.368  0.847  80  79 
Glycine  1.31 0.0002 0.0007  0.461  0.775  81  74 
Citrate  1.30 1.97E-05 0.0001  0.436  0.810  88  68 
Acetate  1.25 0.0003 0.0008  4.930  0.762  71  74 
Formate  1.24 0.0002 0.0007  0.499  0.768  75  74 
Mannitol  1.15 2.21E-05 0.0001  0.209  0.808  79  68 

pT2 BC 
vs. NCs 

Urea  2.21 2.53E-05 0.0008  0.454  0.874  87  83 
1-Methylhistidine  2.11 0.0012 0.0097  0.420  0.788  71  75 
Creatinine  1.82 0.0019 0.0132  0.497  0.775  90  67 
Trigonelline  1.77 3.92E-05 0.0008  0.201  0.865  76  83 
Hippurate  1.50 0.0009 0.0093  0.323  0.795  80  67 
Creatine  1.32 0.0065 0.0297  0.469  0.742  89  58 
Mannitol  1.23 0.0009 0.0093  0.215  0.795  82  67  

a VIP scores derived from OPLS-DA model; bP-value and FDR determined from Student’s t-test, cfold change between cancer and control urine calculated from the 
concentration mean values for each group – cancer-to-normal ratio; dROC curve analysis for individual biomarkers. AUC: area under the curve; FC: fold change; FDR: 
false discovery rate; NCs: normal controls; pT1 and pTa – high risk non-muscle invasive bladder cancer; pT2 – muscle invasive bladder cancer; Sens.: sensitivity; Spec.: 
specifity; VIP: variable importance in projection scores. 
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and 4-hydroxyphenylacetate (AUC = 0.805, specificity = 72, and 
sensitivity = 80). Fig. 2D-H present the box-whisker plots for all five 
selected metabolites whose levels differed significantly in the urine 
samples of BC versus NC individuals. Table 2 reports the statistical pa-
rameters for these 5 metabolites identified by 1H NMR as potential 
biomarkers of BC. These results indicate that, when considered together, 
these five metabolites have increased diagnostic potential and may be 
useful discriminators of malignant versus healthy phenotypes for in-
dividuals with bladder cancer. 

3.2. Differentiation between grades of BC and control urine based on 1H 
NMR metabolite profiles 

PCA, non-parametric OPLS-DA, and one-way ANOVA analyses were 
performed on training and validation data sets to investigate whether 1H 

NMR metabolite profiles of urine extracts could differentiate between 
bladder cancer tumor grades and controls. The BC grade analysis 
included 95 urine samples from patients with high-grade (HG) and low- 
grade (LG) cancer, with three samples from papillary urothelial 
neoplasm of low malignant potential (PUNLMP) patients excluded. NMR 
datasets were divided like previously into two subsets: a training data set 
to train a model (n = 29 HG, n = 36 LG, and n = 69 NCs) and a vali-
dation data set to assess the validity and robustness of the learned model 
(n = 11 HG, n = 18 LG and n = 30 NCs). In both the training and vali-
dation sets, PCA and OPLS-DA scores plots indicated a good separation 
between control and cancer groups with different grades of tumors (LG 
vs. NCs and HG vs. NCs) (Fig. 2). However, in the PCA scores plot, the 
difference between the LG and HG BC patients was marginal (data not 
shown). In the LG BC vs. NCs OPLS-DA model, 3 metabolites were 
considered significant (VIP > 1, P-value, FDR < 0.05, FC < 0.5 or >2.0, 

Fig. 3. Analysis of the urine metabolite profiles 
obtained from the 1H NMR training dataset and 
assessment of whether metabolite differences 
can be used to differentiate between various 
grades of bladder cancer and control samples. 
(A) PCA and (B) OPLS-DA score plots of HG BC 
(violet) and control (orange) urine samples. (C) 
PCA and (D) OPLS-DA score plots of LG BC 
(green) and control (orange) urine samples. (E - 
G) The box-and-whisker plots of selected me-
tabolites were observed in the control, HG, and 
LG BC urine samples. HG: high-grade; LG: low- 
grade; PC: primary component;.   
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AUC > 0.7) including trigonelline, hippurate, mannitol, for both the 
training set and the validation set (Table 2). All three metabolites were 
found in higher concentrations in the urines of NCs group compared to 
the BC patients. Analysis of HG BC vs. NCs in the training and validation 
sets of the OPLS-DA model indicated that these three metabolites were 
significant to separating the HG BC from the NC group (Table 2). Fig. 3 
displays PCA and OPLS-DA scores plots resulting from this analysis, and 
illustrates the extent of the separation of HG, LG, from NCs, resulting 
from the differential urine metabolite profiles in the training and in 
validation datasets. Although unsupervised PCA analysis did not clearly 
separate the groups based on distinct tumor grades, the cancer groups 
separated clearly from the NC group. 

3.3. Differentiation between stages of BC and control based on 1H NMR 
metabolite profile analyses of patient and control urine samples 

To differentiate between the various stages of bladder cancer, the 
complete metabolite concentration dataset obtained from the NMR 
studies and measured in the urine samples of patients with different 
stages of BC and normal controls was subjected to PCA, OPLS-DA, and 
non-parametric one-way ANOVA analyses. The complete set of metab-
olite profiles was used to evaluate whether differences in metabolite 
concentrations could be used to separate urine samples based on distinct 
BC tumor stages. 87 patients with non-muscle invasive bladder cancer 
(pTa and pT1) and 12 patients with muscle invasive bladder cancer 
(pT2) provided urine samples that were used in this analysis. A training 
data set was created with n = 48 pTa and n = 69 NCs. A validation data 

Fig. 4. Analysis of training set urine metabolite profiles obtained from 1H NMR to evaluate whether distinct metabolite patterns separate urine sample groups based 
on distinct stages of bladder cancer and control. (A) PCA and (B) OPLS-DA score plots of pTa BC (blue) and control (orange) urine samples. (C) PCA and (D) OPLS-DA 
score plots of pT1 BC (violet) and control (orange) urine samples. (E) PCA and (F) OPLS-DA score plots of pT2 BC (green) and control (orange) urine samples. (G - K) 
The box-and-whisker plots of selected metabolites were observed in control, pTa, pT1, and pT2 BC urine samples. 
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set with n = 20 pTa, and n = 30 NCs was then used to evaluate the 
validity and robustness of the trained model. Due to the limited number 
of samples, analysis of the pT1 and pT2 stage of BC was performed 
without dividing it into two sets (70 NCs, 12 patients with pT2 and 34 
with pT1). The PCA and OPLS-DA score plots indicated a good separa-
tion between NCs and the various stages of BC (pTa vs. NCs, pT1 vs. NCs, 
and pT2 vs. NCs, Fig. 4). The performance of three models to differen-
tiate between pTa, pT1, and pT2 bladder cancer stages and NCs was then 
evaluated using ROC curve analysis. Based on the cut-off criteria (FC > 2 
or < 0.5, VIP > 1; AUC > 0.7, P-value and FDR < 0.05), 6, 10, and 7 
metabolites were found to be most significant for sample distinction 
between pTa BC vs. NCs, pT1 BC vs. NCs, and pT2 BC vs. NCs, respec-
tively (Table 2). However, the urine metabolomes could not themselves 
distinguish between the three cancer stage groups (pT1 versus pTa 
versus pT2), as no metabolite pattern differences were found to be sta-
tistically significant (Fig. 4G-4 J). 

3.4. Untargeted metabolic profiling of urine with PFL-2D GS LASiS 
AuNPs and 109AgNPs LDI-MS 

Both gold and silver-109 nanoparticle-coated targets were utilized 
for laser mass spectrometry-based profiling of urine metabolites 
collected from patients diagnosed with bladder cancer and control in-
dividuals. PFL-2D GS LASiS AuNPs and 109AgNPs LDI-MS (pulsed fiber 
laser ablation synthesis of gold and solver-109 nanoparticles in solution 
with the use of a 2D galvoscanner) were employed for the analysis of 200 
urine samples, which resulted in the identification of 690 differentially 
regulated mass spectral features. The data was randomly split into two 
subsets for statistical analysis. The training data set consisted of n = 70 
BC and n = 70 NCs and the validation data set was comprised of n = 30 
BC and n = 30 NCs. 2D-PCA and OPLS-DA scores plots were generated 
from multivariate statistical analysis of PFL-2D GS LASiS AuNPs and 
109AgNPs LDI-MS mass spectral features. These analyses provided a clear 
separation of the BC group from the NC control group, as a result of their 
distinct MS-based urine metabolite profiles (see Supplementary data 
Figs. S6, S7). OPLS-DA VIP scores > 1.0, associated with the OPLS-DA 
models, were selected to identify mass spectral features that were 
most discriminatory of the BC and NC groups. For the training dataset, 
the validation of the OPLS-DA model using 2000 permutations resulted 
in R2Y and Q2 values of 0.926 (p < 5E04) and 0.971 (p < 5E04) 
(Fig. S6), while R2Y and Q2 values of 0.867 (p < 5E04) and 0.965 
(p < 5E04), respectively, were measured when analyzing the MS 
metabolomics data present in the validation dataset. This analysis was 
followed by univariate ROC analysis for both training and validation 
datasets. Only m/z values with an AUC greater than 0.7 were chosen for 
the next step of the analysis. Seventy-four features were common be-
tween the training and the validation datasets, and exhibited VIP values 
> 1.0, FDR-corrected p-values < 0.05, fold change (FC) less than 0.5 or 
greater than 1.8, and AUC > 0.7. Of these 74 common mass spectral 
features, were more abundant in the urine of BC patients to control in-
dividual, while 48 exhibited the opposite trend. Multivariate ROC plot- 
based exploratory analysis, based on Random Forest algorithm, was then 
carried out to identify which m/z spectral features were most discrimi-
natory between the BC and control groups. Supplementary data Fig. S10 
presents a summary of all the ROC curves generated from analysis of the 
training and validation datasets, using a range of feature counts (five, 
ten, fifteen, twenty-five, fifty, and one hundred), together with associ-
ated AUC values and confidence intervals. The 50-feature panel of model 
5 in the training set and the 100-feature panel of model 6 in the vali-
dation set provided a very good discrimination power for BC diagnosis 
(AUC > 0.97) (Fig. S8, Supplementary material). 

The data generated from untargeted PFL-2D GS LASiS AuNPs LDI-MS 
experiments were also analyzed using PCA and OPLS-DA to identify the 
mass spectral features that most differentiated control from BC tumor 
groups, using both training and validation datasets. In both instances, 
PCA and OPLS-DA scores plots separated clearly BC from control, in both 

training and validation data subsets, suggesting that PFL-2D GS LASiS 
AuNPs LDI-MS-based metabolite profiling of urine can also be used to 
effectively to identify characteristic metabolic differences that separate 
bladder cancer from control groups (see Supplementary data Fig. S11 
and S12). Validation of the OPLS-DA model using 2000 random per-
mutation steps resulted in R2Y and Q2 values of 0.836 (p < 5E04) and 
0.881 (p < 5E04), respectively for the training dataset (see e Supple-
mentary data Fig. S9, and values of 0.720 (p < 5E04) and 0.879 
(p < 5E04) for the validation dataset (Supplementary data Fig. S10). 
After completing this analysis, univariate as well as multivariate ROC 
analyses were carried out. In the analysis of both subsets (training and 
validation sets), 98 common features were found with VIP scores > 1.0, 
FDR-corrected P-value < 0.05, an FC < 0.5 or > 1.8, and AUC > 0.7. Of 
these 98 features, 49 spectral features were more abundant in urine 
samples of bladder cancer patients compared to control individuals, and 
49 features exhibited the opposite trend (less abundant in BCs than NCs). 
Fig. S11 provides a comprehensive summary of all the ROC curves 
generated from the training and validation datasets using a range of 
feature counts (five, ten, fifteen, twenty-five, fifty, and one hundred), 
along with corresponding AUC values and confidence intervals for each 
curve. The 100-feature panel of model 6 of the training dataset yielded 
the highest accuracy, while the 10-feature panel of model 2 of the 
validation dataset displayed the highest accuracy. Next, putative com-
pound identification of select mass spectral features observed in the PFL- 
2D GS LASiS 109Ag and AuNPs LDI-MS spectra were performed by 
searching against various metabolite databases, such as the Human 
Metabolome Database (HMDB) [37], the MetaCyc Metabolic Pathway 
Database [38], and the LIPID MAPS® Lipidomics Gateway [39]. 
Twenty-five mass spectral features were assigned to putative metabolite 
IDs by comparing the spectral features observed in PFL-2D GS LASiS 
109AgNPs and AuNPs LDI-MS mass spectra with those of compounds 
present the databases mentioned above. All this information is reported 
in Supplementary data Table S4. 

3.5. Biomarker candidates in cancer: a pathway analysis 

A metabolic pathway impact analysis was conducted using Metab-
oAnalyst 5.0 to identify metabolic pathways that are most likely impli-
cated in the observed differences in urine metabolite levels between BCs 
and NCs. Pathway analysis and quantitative pathway enrichment anal-
ysis were performed on thirty-nine metabolites that were identified by 
NMR or LDI MS. Sixteen of these metabolites were found in the KEEG 
database and determined to be endogenous, while others may have 
come from various exogenous sources or gut microbe activity. Two 
different metabolic pathways were found to be significantly impacted, 
and included pathways involved in glyoxylate and dicarboxylate meta-
bolism, and glycine, serine and threonine metabolism. Each of these 
pathways displayed an impact value > 0.1 and a p-value < 0.05. Fig. 5A 
and Supplementary data Table S5 summarize the findings resulting from 
these metabolic pathway impact analyses. 

In order to broaden the extent of metabolic pathways impacted in 
bladder cancer, a quantitative enrichment analysis was employed using 
the MetaboAnalyst 5.0 metabolite route enrichment module and its 
associated Small Molecule Pathway Database (SMPDB). The pathway 
involved in arginine and proline metabolism was found to be third 
impacted pathway with p-values < 0.05 and to be relevant to bladder 
cancer (Fig. 4B and Table S6 in Supplementary data). 

4. Discussion 

Analysis of the metabolite profiles of urine samples obtained from BC 
patients and control individuals using NMR, ICP-OES, and LDI-MS with 
both 109AgNPs and AuNPs-based targets indicated significant changes in 
metabolite levels between patients with BC and controls. In this study, 
39 small molecules were identified that may serve as diagnostic in-
dicators of bladder cancer. Twelve of these compounds were present in 
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higher concentrations and twenty-seven at lower concentrations in the 
urine of BC patients compared to controls (see Tables S2,3 in Supple-
mentary data). The higher concentration of these 15 metabolites may 
reflect the increased production of tumor metabolites that are secreted 
into the urine or may arise from the breakdown or change in the 
structure of non-malignant tissue caused by tumor invasion through the 
epithelial wall. Inflammatory responses due to the presence of the tumor 
may also lead to increased levels of some urine metabolites. The 1H NMR 
metabolomics data revealed 5 compounds that were in higher concen-
tration in the urine of NCs than in the BC subjects and significantly 
discriminated between BC and NC groups. These included 4-hydroxy-
phenylacetate, hippurate, mannitol, trigonelline and urea, 

One of the metabolites that separated the NC and BC groups, and 
exhibited a high VIP value included trigonelline, a product of niacin 
(vitamin B3) metabolism which is excreted in the urine. This compound 
occurs also in plants and many foods [40]. Trigonelline has been shown 
to affect the activity of crucial glucose and lipid metabolism enzymes. 
Moreover, this compound has been tested for anticancer activity. Trig-
onelline had an inhibitory effect on the invasion of hepatoma cancer 
cells [41]. Trigonelline is also an effective Nrf2 inhibitor in anticancer 
activity and increases the sensitivity of chemoresistant pancreatic cell 
lines to anticancer drugs [42]. Research has shown that almost 50% of 
the dietary intake of trigonelline is excreted in urine within 8 h 
following food ingestion [43]. In our studies, the urine level of trig-
onelline was lower in BC patients compared to NCs. This compound has 
also been previously detected in lower amounts in the urine of BC pa-
tients and suggested to be a potential bladder cancer biomarker [44–46]. 
Analogous results, whereby trigonelline levels were found to be reduced, 
have been reported in metabolomics studies of urine samples obtained 
from lung cancer patients and individuals suffering from acute kidney 
injury [47,48]. 

Urea, formed in the liver from ammonia via the urea cycle, was 
another metabolite whose level differences contributed to the separation 
of the BC group from the NC group. Urea is also the end product of 
protein catabolism and is excreted in the urine. High urea concentra-
tions can cause gastrointestinal bleeding and dehydration in the human 
body, while lower urea levels can cause liver failure, nephrotic syn-
drome, and cachexia [49]. Furthermore, it was found that supplying 
urea to cancer cells and blocking the breakdown of urea while accu-
mulating ammonium can effectively kill cancer cells. Our research found 

a significantly lower amount of urea in the urine of BC patients 
compared to controls. Similar results were obtained in blood serum 
analysis from patients with BC, where urea was found to be a good 
discriminator of BC versus control sample groups, and was present in 
much greater amounts in the control group [50]. 

Hippuric acid is a product of the aromatic compound metabolism 
and also excreted in the urine. Hippuric acid negatively affects blood 
pressure, liver ailments, and Crohn’s disease [51]. In our study, the 
levels of hippuric acid were reduced in the urine of BC patients 
compared to the levels found in NCs, which is consistent with previous 
reports [20]. This relation has also been confirmed by several untargeted 
metabolomic profiling studies of BC urine and serum samples [44,50,52, 
53]. 

4-Hydroxyphenylacetate is a common human, fungal, and plant 
metabolite. In our study the urine level of 4-hydroxyphenylacetate was 
lower in BC patients, which is consistent with a prior NMR study [54]. 
Furthermore, 4-hydroxyphenylacetate has also been shown to be 
excreted at lower levels in the urine of kidney cancer patients compared 
to the amount excreted by control individuals [55,56]. 

Another potentially important marker of BC is the polyhydroxy sugar 
alcohol, mannitol. Urine mannitol levels have been measured using 
various analytical methods [57–59]. In one study, human plasma and 
urine samples were collected from individuals suffering from impaired 
GI function, where mannitol was reported to be a potential biomarker of 
impaired intestinal permeability [60]. Our analysis found that the urine 
level of mannitol is higher in NC patients than BCs. Similarly, Lee et al. 
has shown that mannitol levels differ significantly in patients with uri-
nary cancers compared levels found in urine samples of control in-
dividuals [54]. Mannitol has previously been reported to be in much 
lower concentrations in the urine of patients with various stages of BC 
[61], which is consistent with our findings. 

Using modified gold and silver-109 targets in LDI-MS experiments 
made it possible to measure urine samples directly without separating 
and extracting analytes first. Using these methods, MS analysis of urine 
metabolites identified 16 compounds that were in higher concentration 
in urine samples of BC patients compared to controls, and 10 compounds 
that were lower in concentration. Most of these compounds were puta-
tively identified as peptides and lipids. Two of the four lipids found to be 
elevated in the urine of BC patients belonged to the fatty acyl class, while 
the other two lipids belong to the class of sphingolipids and were found 

Fig. 5. The findings of a pathway topology study on the most statistically significant metabolites found in NMR and MS analyses. (A) Pathway analysis using the 
KEGG database; circle size is correlated with influence of pathway; color indicate the relevance ranging from the highest in red to the lowest in white. (B) A 
quantitative examination of enrichment from Small Molecule Pathway Database. 

K. Ossoliński et al.                                                                                                                                                                                                                              



Journal of Pharmaceutical and Biomedical Analysis 233 (2023) 115473

10

in higher concentrations in the urine of NCs. These findings validate our 
earlier research results, which focused on the metabolite profiling of 
blood serum samples from BC patients and NC individuals [32]. 

In many processes associated with cancer cells, lipid metabolism 
plays an important role. Fatty acids are the fundamental components of 
complex lipids, which can be utilized for energy storage or can serve as 
fundamental components of cellular membranes [62]. Changes in lipid 
metabolism have been linked to both the early stages and progression of 
BC [63], as documented by a number of investigators [64]. Sphingoli-
pids are lipids comprised of sphingoid bases, which are aliphatic amino 
alcohols and include sphingosine. Sphingolipids are known to play a 
significant role in the regulation of a variety of cellular processes, 
including cellular apoptosis, proliferation, angiogenesis, senescence, 
and cellular transformation [65]. The significance of sphingolipids in 
the control of cancer growth and the development of cancerous pa-
thology has been extensively discussed in the scientific literature [88]. It 
has been suggested that sphingolipids metabolism plays a role in cancer 
aggressiveness and motility of cancer cells in muscle-infiltrating bladder 
cancer [66]. 

In an effort to identify cellular markers that could distinguish be-
tween the various grades of BC, several articles have been published that 
report on the metabolomics studies of urine and blood of BC patients 
[12,13]. To our knowledge, however, only three studies have investi-
gated the connections between changes in metabolite levels in urine and 
the distinct stages of tumor development (Ta/Tis, T1, and >T2) [18,19, 
67]. In our study, slightly higher concentrations of trigonelline, hippu-
rate, and mannitol were measured in the urine of NCs compared to the 
levels found in HG and LG BC groups (Fig. 3, Table 2). 

Our study demonstrated that urine-based metabolite profiling can 
accurately discriminate different stages of BC (pTa, pT1, and pT2) from 
NCs (Table 2, Fig. 4). In the urine of patients with pTa, pT1, and pT2 
stages of BC, we identified 13 significant metabolites that were good 
discriminators of the different cancer stage groups from the control 
group. Our research identified 6 compounds that distinguished BC pa-
tients with pTa from the control group, which included trigonelline, 4- 
hydroxyphenylacetate, hippurate, mannitol, 1-methylhistidine, crea-
tine. In addition to the previously described compounds, 1-methylhisti-
dine and creatine deserves attention. Differential levels of 1- 
methylhistidine in the urine of BC patients compared to healthy con-
trols has been associated with increased risk of BC recurrence [61,68]. 
Previous studies have shown that creatinine levels are lower in the 
serum and urine of BC patients compared to healthy controls [50,53]. 
However, there have been studies suggesting that this compound is 
present in elevated level in the urine and tissues of BC patients compared 
to controls [69,70]. The reason for these contradictory findings is un-
clear, although our results are consistent with previous studies that 
found lower levels of this compound in the urine of BC patients. 

Of all ten potential urine-derived bladder cancer of pT1 stage 
markers identified by our team, acetate deserves attention. Recent 
studies have shown that acetate is a key substrate in tumor bio-
energetics. At the heart of acetate utilization in cancer is the enzyme 
ACSS2, responsible for converting acetate to acetyl-CoA. Acetyl-CoA 
production is critical for maintaining fatty acid synthesis in cancer cells. 
Fatty acid metabolism is a critical aspect of cancer metabolism because 
cancer cell proliferation requires the synthesis of numerous cellular 
building blocks. It is also interesting to note that in bladder cancer there 
may also be changes in lipid or fatty acid metabolism. Glucose-derived 
endogenous acetate contributes to fatty acid synthesis in cisplatin- 
resistant cells [71]. In addition, the increasing use of 11C-acetate posi-
tron emission tomography in clinics provides supporting evidence for 
the importance of acetate metabolism in cancer. 11C-acetate is used in 
PET/MRI imaging and displays moderate accuracy in primary BC stag-
ing and limited sensitivity in detecting metastatic lymph nodes and 
response to neoadjuvant chemotherapy [72]. Moreover, PET/MRI im-
aging is able to reach specificity and sensitivity levels of 50% and 80%, 
respectively, for detecting lymph node metastasis [73]. Our study 

reports a clear correlation between the level of acetate in the urine and 
grade of bladder cancer tumor malignancy. 

5. Conclusion 

We have demonstrated that multivariate statistics, together with 
high-resolution NMR and gold/silver-109-based high-resolution LDI-MS 
metabolomics, are powerful analytical techniques to investigate urine 
metabolomes and changes in metabolite profiles in BC patients. 1H NMR 
metabolomics was employed to assess the urine metabolite patterns of 
99 patients with BC and 100 NCs. This led to the identification of five 
potentially robust metabolic indicators of BC, which include 4-hydroxy-
phenylacetate, hippurate, mannitol, trigonelline, and urea. The combi-
nation of these metabolites predicted BC with potentially excellent 
predictive power as revealed by AUC values greater than 0.82. Most of 
these compounds have been previously linked with bladder cancer, 
however until now, they have not been reported in such a combination 
as a potential set of discriminating markers of this disease. In addition, 
metabolite profiling using gold and silver-109 nanoparticle-based laser 
desorption/ionization mass spectrometry (LDI-MS) identified 26 addi-
tional compounds, the majority of which were lipids, which helped 
differentiate between cancer and control urine samples. In addition, 
three additional metabolites were found to be potentially valuable dis-
criminators of LG versus HG bladder cancer, and thirteen were potential 
reporters of pTa/pT1 and pT2 phases of BC. The distinct metabolite 
profiles observed in the urine of patients with BC compared to those of 
NCs may thus serve as diagnostic markers of BC and may help distin-
guish between the various stages and grades of BC. Results of this study 
also suggest that evaluating disease severity and progression in BC using 
a combination of urine metabolites has better predictive potential than 
using either metabolite alone. 

CRediT authorship contribution statement 
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and elemental profiling of blood serum in bladder cancer, J. Pharm. Anal. (2022), 
https://doi.org/10.1016/J.JPHA.2022.08.004. 
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T. Hansen, T. Hyötyläinen, K. Clément, M. Oresic, P. Bork, S.D. Ehrlich, J. Raes, O. 
B. Pedersen, D. Gauguier, M.E. Dumas, Human and preclinical studies of the 
host–gut microbiome co-metabolite hippurate as a marker and mediator of 
metabolic health, Gut 70 (2021) 2105–2114, https://doi.org/10.1136/GUTJNL- 
2020-323314. 
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K. Ossoliński et al.                                                                                                                                                                                                                              

https://doi.org/10.1038/onc.2012.493
https://doi.org/10.1007/S00216-013-7288-0/TABLES/4
https://doi.org/10.1007/S00216-013-7288-0/TABLES/4
https://doi.org/10.1074/mcp.M111.007922
https://doi.org/10.1074/mcp.M111.007922
https://doi.org/10.3390/CANCERS11070914
https://doi.org/10.3390/CANCERS11070914
https://doi.org/10.1016/S1872-2040(11)60570-7
https://doi.org/10.1016/S1872-2040(11)60570-7
https://doi.org/10.1039/C5MB00492F
https://doi.org/10.1039/C5MB00492F
https://doi.org/10.1021/PR100899X/SUPPL_FILE/PR100899X_SI_001.PDF
https://doi.org/10.1021/PR100899X/SUPPL_FILE/PR100899X_SI_001.PDF
https://doi.org/10.1016/J.CEJA.2021.100174
https://doi.org/10.3390/APP11062835
https://doi.org/10.3390/APP11062835
https://doi.org/10.1136/GUTJNL-2020-323314
https://doi.org/10.1136/GUTJNL-2020-323314
https://doi.org/10.3390/molecules26082194
https://doi.org/10.3390/molecules26082194
https://doi.org/10.1371/journal.pone.0115870
https://doi.org/10.3390/metabo11090591
https://doi.org/10.3390/metabo11090591
https://doi.org/10.1038/srep37275
https://doi.org/10.1089/omi.2010.0094
https://doi.org/10.1111/J.1365-2982.2009.01361.X
https://doi.org/10.1111/J.1365-2982.2009.01361.X
https://doi.org/10.1016/0009-8981(89)90332-X
https://doi.org/10.3390/MOLECULES27092677
https://doi.org/10.3390/MOLECULES27092677
https://doi.org/10.3390/METABO10010022
https://doi.org/10.1016/J.CHROMA.2013.10.002
https://doi.org/10.1016/J.CHROMA.2013.10.002
https://doi.org/10.1111/J.1742-4658.2012.08644.X
https://doi.org/10.18632/ONCOTARGET.24229
http://refhub.elsevier.com/S0731-7085(23)00242-X/sbref64
http://refhub.elsevier.com/S0731-7085(23)00242-X/sbref64
http://refhub.elsevier.com/S0731-7085(23)00242-X/sbref64
https://doi.org/10.1007/s10555-011-9304-1
https://doi.org/10.1038/srep42157
https://doi.org/10.1038/srep42157
https://doi.org/10.3390/CANCERS11050686
https://doi.org/10.1007/s11255-021-03080-6
https://doi.org/10.1038/s41598-018-27538-3
https://doi.org/10.1038/s41598-018-27538-3
https://doi.org/10.1021/pr4004135
https://doi.org/10.1021/pr4004135
https://doi.org/10.1016/J.BBALIP.2018.06.005
https://doi.org/10.1016/J.BBALIP.2018.06.005
https://doi.org/10.1186/S40644-018-0158-4
https://doi.org/10.1007/S11307-011-0488-0/TABLES/2
https://doi.org/10.1007/S11307-011-0488-0/TABLES/2

	Targeted and untargeted urinary metabolic profiling of bladder cancer
	1 Introduction
	2 Materials and methods
	2.1 Materials and equipment
	2.2 Collection of human urine samples
	2.3 Analysis of tissue samples
	2.4 Preparation of urine metabolite extracts for 1H NMR metabolomics
	2.5 Preparation of urine samples for LDI-MS studies
	2.6 Data processing and spectral acquisition
	2.7 Multivariate statistical analysis

	3 Results
	3.1 Differentiation between BC and control urine based on 1H NMR data
	3.2 Differentiation between grades of BC and control urine based on 1H NMR metabolite profiles
	3.3 Differentiation between stages of BC and control based on 1H NMR metabolite profile analyses of patient and control uri ...
	3.4 Untargeted metabolic profiling of urine with PFL-2D GS LASiS AuNPs and 109AgNPs LDI-MS
	3.5 Biomarker candidates in cancer: a pathway analysis

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supporting information
	References


