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a b s t r a c t

Bladder cancer (BC) is one of the most frequently diagnosed types of urinary cancer. Despite advances in
treatment methods, no specific biomarkers are currently in use. Targeted and untargeted profiling of
metabolites and elements of human blood serum from 100 BC patients and the same number of normal
controls (NCs), with external validation, was attempted using three analytical methods, i.e., nuclear
magnetic resonance, gold and silver-109 nanoparticle-based laser desorption/ionization mass spec-
trometry (LDI-MS), and inductively coupled plasma optical emission spectrometry (ICP-OES). All results
were subjected to multivariate statistical analysis. Four potential serum biomarkers of BC, namely, iso-
butyrate, pyroglutamate, choline, and acetate, were quantified with proton nuclear magnetic resonance,
which had excellent predictive ability as judged by the area under the curve (AUC) value of 0.999. Two
elements, Li and Fe, were also found to distinguish between cancer and control samples, as judged from
ICP-OES data and AUC of 0.807 (in validation set). Twenty-five putatively identified compounds, mostly
related to glycans and lipids, differentiated BC from NCs, as detected using LDI-MS. Five serum metab-
olites were found to discriminate between tumor grades and nine metabolites between tumor stages.
The results from three different analytical platforms demonstrate that the identified distinct serum
metabolites and metal elements have potential to be used for noninvasive detection, staging, and grading
of BC.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bladder cancer (BC) is the tenth most commonly diagnosed
cancer in the world with approximately 570,000 new cases diag-
nosed each year. The incidence rate per 100,000 person per year
varies from 2.4 for women to 9.5 for men, and the mortality rate
varies from 0.86 for women to 3.3 for men [1]. Globally, urothelial
carcinoma (UC) identified histopathologically constitutes more
than 90% of all the cases of BC. In endemic regions such as Egypt
with a high prevalence of schistosomiasis infection, squamous cell
ier B.V. on behalf of Xi’an Jiaotong
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carcinoma (SCC) accounts for the majority of BC. However, control
over the Schistosoma haematobium infection has led to a shift from
SCC to UC being the most prevalent type of BC [2]. The remaining
10% includes exposure to aromatic amines, hydrocarbons, dyes,
some solvents, and coal tar [3]. The most common symptoms of BC
include macroscopic and microscopic hematuria. The mainstay for
BC diagnosis includes cystoscopy and urine cytology, and may
include ultrasound and computed tomography urography. Unfor-
tunately, cystoscopy is considered as an invasive procedure and the
sensitivity of urine cytology is low. Therefore, to reduce the number
of procedures, urinary markers have been proposed to track BC
recurrence [4,5]. These urinary markers are associated with higher
sensitivity, although at the expense of lower specificity, compared
with the accuracy of urine cytology. However, these markers have
University. This is an open access article under the CC BY-NC-ND license (http://
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not been incorporated into clinical guidelines regarding the diag-
nosis and surveillance of BC. Therefore, there is a significant need
for noninvasive methods for the early detection of BC with high
sensitivity, specificity, and low cost.

Instrumental analyses of small molecules in biofluids, such as
blood, serum, and urine, are very powerful approaches to identify
and characterize diagnostic metabolic biomarkers. Metabolite
concentrations are reflective of the state of the organism and may
be the indicators of disease states including cancer states [6]. In the
past decade, numerous sensitive analytical methods have been
developed to allow the study of the metabolic state of living sys-
tem. The most frequently used analytical platforms for study of
metabolites are nuclear magnetic resonance (NMR) [7] and mass
spectrometry (MS), the latter usually coupled with liquid chro-
matography (LC) or gas chromatography (GC) [8e10].

Metabolomic methods have been used for study of BC with the
aim of identifying potential biomarkers in urine, serum, and tissues
[11,12]. The advantage of serum analysis is that it is much less
susceptible to the dilution factor compared to urine [13]. Although
from an application point of view, serum analysis is the best option,
the published data are very limited. A majority of reports of BC
serum metabolomics describe MS results. The first such study [14]
was focused on human serum profiling of BC with LC-MS, and the
authors proposed five potential biomarkers. Later, Zhou et al. [15]
applied GC-MS to perform plasma metabolomics analyses of 92
patients and 48 controls. The results identified increased levels of
metabolites associated with the pentose phosphate pathway, fatty
acid synthesis, and nucleotide metabolism in BC samples compared
with the controls. The authors focused on three metabolites that
could discriminate between the BC and control groups. In the
following years, several publications appeared that focused on
identifying potential biomarkers of BC using LC-MS [16e20] and
GC-MS [21,22]. To date, only three reports have reported metabolic
differences in serum within BC with NMR. The first NMR serum
metabolomics study of BC was published by Cao et al. [23] in 2012,
and involved 67 BC patients and 25 healthy controls, and revealed a
few metabolites for which concentrations differed significantly
between these two groups. The metabolite changes were linked to
impacted pathways of lipogenesis, aromatic amino acid meta-
bolism, glycolysis, and the citrate cycle. In 2013, Bansal et al. [24]
applied proton nuclear magnetic resonance (1H NMR) spectroscopy
to compare 36 low-grade (LG) and 31 high-grade (HG) BC samples
with those of 32 healthy control patients. The study identified six
metabolites that could, together, serve as differentiating bio-
markers of LG versus HG BC. This same research team recently
reported the use of NMR to identify variations in the concentration
of previously selected potential serum BC biomarkers in 55 pre-
operative and 53 post-operative BC patients, and 152 controls [25].

Various studies have established the connection between levels
of metals, including trace-level metals and other trace elements,
with an increased risk of developing cancer in humans [26]. Toxic
elements are known risk factors for genetic and epigenetic effects,
which enhance the risk of developing different cancers [27].
Inductively coupled plasma optical emission spectrometry (ICP-
OES) has emerged as one of the most frequently used methods for
assessing the concentrations of metals in samples of biological
origin [28] including BC serum [29]. Studies recruited 27 BC pa-
tients, 29 non-tumor patients with acute and chronic inflamma-
tion, and 30 healthy control patients, who were divided into
validation and discovery cohorts. ICP-OES methods have also been
used in the search for biomarkers of other cancers, including kidney
cancer [30,31].

Herein, we report the results of the largest investigation to date,
comprising the targeted and non-targeted, elemental- and
metabolomics-based profiling of 200 serum samples obtained from
2

100 patients with BC and 100 healthy controls. This study has
enabled the elucidation of the detailed metabolic and elemental
changes resulting from BC, with a specific focus on the stage and
grade of BC. The analytical platforms used were high-resolution 1H
NMR, ICP-OES, and high-resolution laser desorption/ionization MS
(LDI-MS), and the associated data were subjected to robust vali-
dation by multivariate and univariate statistical analyses.

2. Materials and methods

2.1. Materials and instruments

High-resolution LDI-MSI experiments were performed on
Autoflex Speed time-of-flight mass spectrometer (Bruker, Bremen,
Germany) with a declared resolution of >20,000 for m/z values of
>1,000 in positive-ion reflectron mode. The samples were placed
on a stainless-steel target with automatic pipette and then covered
by nebulization with a silver-109 nanoparticle (109AgNP) suspen-
sion generated by pulsed fiber laser (PFL) two-dimensional (2D)
galvoscanner (GS) laser synthesis in solution/suspension (LASiS)
and nebulization of 109AgNPs (109AgNPs LDI-MS) as described in
our recent publication [32]. Gold nanoparticle (AuNP)-based LDI-
MS (AuNPs LDI-MS) was prepared analogically as described above
with the exception for PFL-2D GS LASiS material/substrate, which
was gold foil of 1 mm thickness. All solvents were of minimum LC-
MS grade and were acquired from Sigma Aldrich (St. Louis, MO,
USA). Deuterium oxide (D2O) and 4,4-dimethyl-4-silapentane-1-
sulfonic acid were purchased from Sigma Inc. (Boston, MA, USA).
Nitric acid EMSURE ISO-grade 65% and hydrogen peroxide EMSURE
ACS ISO-grade 30% were purchased from Merck KGaA (Darmstadt,
Germany).

2.2. Collection of human serum samples

Serum samples were collected at John Paul II Hospital (Kolbus-
zowa, Poland). Control serum samples were collected from healthy
volunteers after a medical examination focused on the detection of
urinary cancers. Both types of serum samples from the original
NMR, MS, and ICP-OES datasets were randomly divided every time
into two groups, a training set, comprising 80% of all samples, and a
validation set, corresponding to 20% of all samples. All the patients
underwent transurethral resection of bladder tumor following
detailed clinical questioning and laboratory testing. The local
bioethics committee approved the study (Permission No.: 2018/04/
10). Just over half of the patients (n ¼ 54) had LG BC and papillary
urothelial neoplasm of low malignant potential (PUNLMP) (n ¼ 3),
whereas the remaining patient group exhibited HG disease
(n ¼ 41). In two cases, both HG and LG neoplasms were detected.
Most of these patients (n ¼ 69) displayed noninvasive papillary
carcinomas (pathologic stage Ta, pTa) stage disease, 19 had sub-
mucosal invasive tumors (pathologic stage T1 (pT1)) stage, and 12
patients had muscle invasive BC (pathologic stage T2 (pT2)). The
average age of patients diagnosed with BC and in the NC group was
74 ± 10 and 64 ± 12 years, respectively. The clinical characteristics
of the patients are presented in Table S1. A 2.6 mL of blood sample
was drawn from each participant and centrifuged (3,000 g, 10 min,
room temperature), then separated and kept at �60 �C.

2.3. Preparation of serum metabolite extracts for 1H NMR
metabolomics

Medium-to-high polarity metabolites were extracted from
serum samples as stated in our recent publication [33] and detailed
in Section S1 in the Supplementary data.
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2.4. Preparation of serum samples for LDI-MS studies

Serum samples were thawed at room temperature and diluted
500 times with methanol. Then, 0.3 mL of serum sample was placed
directly on target plates (109Ag and Au PFL-2D GS LASiS [32]). After
the solvent was evaporated in air, the plates with the samples were
measured with Autoflex Speed apparatus.

2.5. Data processing and spectral acquisition

NMR and MS spectral acquisition and processing are shown in
the Supplementary data (Sections S2eS4).

2.6. ICP-OES analysis

Determination of the concentrations of Ca, Fe, K, Na, Mg, as well
as minor elements (Mn, P, and S) and trace elements (Cu and Zn) in
serum, was performed for 116 samples (65 BC and 51 NC) as stated
in our recent publication [31] and detailed in Section S5 in the
Supplementary data and Table S2.

2.7. Multivariate statistical analysis

All metabolite datasets were analyzed using the MetaboAnalyst
5.0 [34]. The statistical analysis approach presented in this publi-
cation is similar to one we previously presented [31] and another
unrelated study [35]; details are presented in the Supplementary
data (Section S6).

3. Results

In this work, we studied the metabolic profiles of BC in an effort
to propose serum-specific metabolic and/or elemental markers for
the specific detection of BC. Two hundred (100 BC and 100 normal
control (NC)) 1H NMR spectra were recorded of metabolite extracts
from patients and healthy control serum samples. Four hundred LDI
mass spectrawere recordedwith the use of 109Ag and Au PFL-2D GS
LASiS targets. Additionally, 116 ICP-OES spectra of samples from 65
patients with BC and 51 NCs were studied.

3.1. Differences between BC and control serum by 1H NMR

Two hundred extracts from sera (100 cancer and 100 control)
were analyzed with 1H NMR spectroscopy. Overall, 39 compounds
were identified in each serum sample following standard protocols
[36,37]. An overlay of control and cancer NMR spectra, presented as
blue and red traces, respectively, in Figs.1B and C, shows a relatively
high degree of similarity in the raw NMR data. These spectral re-
gions depict NMR signals observed from 3-hydroxybutyrate and
acetatemetabolites, respectively. The intensity-normalized spectral
overlays shown in Figs. 1B and C clearly indicate that 3-
hydroxybutyrate levels (Fig. 1B) are higher and acetate levels (Fig.
1C) are lower in the serum profiles of patients with BC (red)
compared with healthy controls (blue). Detailed analysis of the
spectra indicated significant differences in metabolite levels be-
tween serum samples from patients with BC and healthy controls.

Metabolite concentration datasets obtained by NMR metab-
olomics were randomly divided into two subsets: a training dataset
to train the model (n ¼ 80 BC and n ¼ 80 NCs), and a validation
dataset to assess the validity and robustness of the trained model
(n ¼ 20 BC and n ¼ 20 NCs). Metabolite concentrations from both
datasets were subjected to statistical analyses to assess differences
in metabolite levels. The results of these analyses are summarized
in Tables S3 and S4. The 2D principal components analysis (PCA)
score plots of both subsets indicated good separation between the
3

cancer and the controls (Fig. 2A). In the validation set, separation
between cancer and control serum samples was also observed
along principal components 1 and 2 (Fig. 2B). The three-dimen-
sional (3D) PCA plots for training and validation sets are provided in
Figs. S1A and B.

A supervised multivariate analysis of the training set with the
aid of orthogonal partial least-squares discriminant analysis (OPLS-
DA) indicated the strong separation of the BC and NC groups
(Fig. 2C). Two thousand permutation tests were conducted to
evaluate the statistical robustness of the OPLS-DA model (Figs. S2A
and B). Good discriminationwas observed between the two groups
(Q2¼ 0.880, R2Y¼ 0.914, P < 0.0005 (0/2000)), revealing significant
differences in the metabolic profiles of cancer versus control serum
samples. Group separations were observed with OPLS-DA in the
validation set (Fig. 2D) and were confirmed by the good results of
the permutation test (Q2¼ 0.780, R2Y¼ 0.932, P < 0.0005 (0/2000))
(Figs. S2C and D). Potential serum BC biomarkers were selected on
the basis of the S-plot resulting from the OPLS-DA model. Variables
with |P(corr)| > 0.5 were considered significant. Four variables
(acetate, propionate, pyroglutamate, and choline) were positively
correlated with the group separation, as determined by a P(corr) [1]
score of >0.5, while one metabolite (isobutyrate) negatively
correlated with the group separation, as assessed by �P(corr)
[1] < �0.5 (Fig. S1C). The S-plot of the OPLS-DA model in the
validation set confirmed almost all of the selected metabolites
(except for propionate) as the most significant for the differentia-
tion of the BC and NC groups (Fig. S1D). Finally, four metabolites
were identified as significant discriminators: acetate, pyrogluta-
mate, and choline, which all exhibited higher concentrations in the
sera of NCs, and isobutyrate, which was significantly elevated in the
sera of BC patients. The P-value of each variable was calculated
using independent t-tests and only variables with P-values and
false discovery rate < 0.05 were considered significant. Metabolite
concentration information for a set of 39 significant metabolites is
presented in Tables S3 and S4. Next, univariate receiver operating
characteristic (ROC) curve analysis was separately performed on
both the training and validation sets to evaluate the diagnostic
ability of the models. The quality of the ranking represents the area
under the curve (AUC) above 0.7. The results indicated that in the
serum samples, all four previously selected metabolites (acetate,
choline, pyroglutamate, and isobutyrate) exhibited very high AUC
(above 0.82). The best ROC analyses with the highest significance
were obtained for isobutyrate (AUC ¼ 0.953, specificity ¼ 0.9, and
sensitivity ¼ 0.9), followed by pyroglutamate (AUC ¼ 0.894,
specificity ¼ 0.8, and sensitivity ¼ 0.9), propionate (AUC ¼ 0.859,
specificity ¼ 1.0, and sensitivity ¼ 0.7), choline (AUC ¼ 0.828,
specificity ¼ 0.8, and sensitivity ¼ 0.8), and acetate (AUC ¼ 0.824,
specificity ¼ 0.8, and sensitivity ¼ 1.0). The range of concentrations
compared to all these metabolites in the serum samples of cancer
patients compared to NCs is reported in Fig. S3. Themost significant
results from our statistical analyses of compounds identified as
potential biomarkers of BC are presented in Table 1.

The classification ROC model was built with the use of Metab-
oAnalyst 5.0 online service and was based on a random forest al-
gorithm. As shown in Figs. 2E and F, the combination of levels of
these metabolites was a better discriminator (AUC >0.999) than
each metabolite separately in both data sets. An excellent
discriminating classification was found for four metabolites, i.e.,
acetate, propionate, choline, and isobutyrate, with an AUC of 0.999.
For this model, the confidence interval ranged from 0.994 to 1.000
(Fig. 2E). The validation of the ROC model is shown in Fig. S4 and a
permutation test with 1000 permutations yielded a P-value <
0.001, supporting the validity of the ROC analysis. The average of
the predicted class probabilities of each sample and the average
accuracy of the ROC curve demonstrated good classification



Fig. 1. (A) Characteristic proton nuclear magnetic resonance (1H NMR) spectrum fragment (0.5e4.2 ppm) of a protein-free metabolite extract mixture obtained from serum sample
from a patient with BC, recorded on a 600 MHz (14 T) solution NMR spectrometer. Expanded NMR spectral regions, corresponding to 1H chemical shift ranges of (B) 1.16e1.21 ppm
for 3-hydroxybutyrate and (C) 1.900e1.911 ppm for acetate, with a spectral overlay of 80 serum metabolic profiles obtained from healthy control patients depicted in blue (blue
spectral traces) and BC patients in red (red spectral traces).
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discriminatory power, with most of the samples classified accu-
rately in their respective groups. The results suggested that four
specific metabolites, namely, acetate, propionate, choline, and iso-
butyrate, could significantly increase diagnostic potential and serve
as useful discriminators of cancerous versus healthy phenotypes in
patients diagnosed with BC.

3.2. Differences between grades of BC with 1H NMR

To determine whether metabolomics analysis of serum sam-
ples by 1H NMR could help discriminate between different
grades of BCs, PCA and OPLS-DA analyses were performed on the
entire metabolite dataset. The analysis of BC included 95 serum
samples from patients with a uniquely defined grade of cancer;
three samples from patients with PUNLMP and two samples
from patients with tumor only partially classified as HG were
excluded. Finally, 41 serum extracts from patients with HG
cancer and 54 samples from patients with LG cancer were used
for analysis. The 2D and 3D PCA score plots, which revealed
relatively low discrimination between LG and HG cases with a
few outliers, are shown in Figs. S5A and B. Likewise, the OPLS-DA
score plots highlighted little separation between the HG and LG
cancer groups (Fig. S5C), yet yielded an acceptable P-value
4

(P ¼ 0.002). The statistical significance of the model was exam-
ined using Q2 (0.192) and permutation tests (n ¼ 2000), which
yielded a P-value lower than 0.05. Detailed assessments of the
quality of the OPLS-DA model are shown in Fig. S6. The S-plot
analysis of the OPLS-DA model indicated that 15 metabolites
were significant contributors to the small separation observed
between LG vs. HG samples in the 2D and 3D OPLS-DA score plot
(Fig. S7). Of these 15 metabolites, leucine, histidine, alanine,
3-methyl-2-oxovalerate, tyrosine, phenylalanine, choline, tryp-
tophan, hypoxanthine, asparagine, valine, proline, threonine,
2-hydroxybutyrate, and glutamine were found to be positively
correlated with group separation with a P(corr) [1] score > 0.5.
These biomarker candidates were subjected to a t-test to assess
the significance of altered levels in LG versus HG. All 15 me-
tabolites were found to exhibit statistically significant differences
in concentration (P < 0.05; q < 0.05 and |P(corr)| > 0.5), sug-
gesting that examining the different levels of these metabolites
in human sera may be an effective way to identify LG and
discriminate LG from HG in patients with BC. AUC values for five
of the 15 metabolites were found to be greater than 0.74 (Fig. S8).
Additionally, ROC curve analysis of these five metabolites (i.e.,
leucine, histidine, alanine, 3-methyl-2-oxovalerate, and tyrosine)
only yielded a satisfactory AUC value of 0.775 (Fig. S9A), and a



Fig. 2. Two-dimensional principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the tumor (violet) and control
(orange) serum samples in the (A and C) training set and (B and D) validation set for 1H NMR data. The receiving operator characteristic (ROC) curves of the combination of four
differential metabolites, namely, isobutyrate, pyroglutamate, choline, and acetate, in the (E) training set and (F) validation set. AUC: area under the ROC curve; CI: confidence
interval; PC: principal component.
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valid permutation test with a P-value < 0.001. The average ac-
curacy based on 100 cross validations amounted to a value of
0.693 (Fig. S9D). These analyses support that leucine, histidine,
alanine, 3-methyl-2-oxovalerate, and tyrosine may be good in-
dicators discriminating bladder tumor grades.
5

3.3. Differences between stages of BC identified by 1H NMR

Analysis of tumor stages was also performed for the entire 1H
NMR dataset of serum metabolite extracts. Metabolite profiling
analysis included 88 serum samples frompatients with non-muscle



Table 1
Summary of targeted quantitative analysis of potential biomarkers of BC from proton nuclear magnetic resonance (1H NMR) and inductively coupled plasma optical emission
spectrometry (ICP-OES) spectral analyses of serum samples (P-value < 0.05; |P(corr)[1]| > 0.5; area under the curve (AUC) > 0.75).

Comparison mode Data set Metabolite/element AUC VIP [t] P(corr)[1] P-value a Fold change b

Cancer vs. control 1H NMR Isobutyrate 0.95 2.2 �0.718 4.3 � 10�23 1.9
Pyroglutamate 0.89 1.9 0.626 7.8 � 10�18 0.5
Propionate 0.86 2.0 0.638 4.2 � 10�15 0.8
Choline 0.83 1.7 0.536 7.6 � 10�13 0.7
Acetate 0.82 2.3 0.729 1.6 � 10�12 0.4

ICP-OES Li 0.71 1.4 0.512 5.8 � 10�4 0.1
Fe 0.85 2.0 �0.740 1.1 � 10�8 1.9

Low-grade vs. high-grade 1H NMR Leucine 0.80 1.5 0.711 1.3 � 10�6 0.8
Histidine 0.79 1.7 0.830 2.2 � 10�6 0.7
Alanine 0.77 1.5 0.718 1.4 � 10�5 0.8
3-methyl-2-oxovalerate 0.77 1.4 0.690 2.2 � 10�5 0.6
Tyrosine 0.75 1.2 0.568 6.3 � 10�5 0.8

pTa/pT1 vs. pT2 1H NMR Histidine 0.80 1.9 �0.832 0.0001 1.9
Alanine 0.79 1.7 �0.732 0.0002 1.6
Tryptophan 0.77 1.7 �0.718 0.0002 1.6
Glutamine 0.77 1.5 �0.645 0.0017 1.4
Glycine 0.75 1.4 �0.593 0.0069 1.4
Methylhistidine 0.88 1.3 �0.580 0.0094 2.1
Choline 0.88 1.3 �0.566 0.0015 1.5
Isobutyrate 0.82 1.2 �0.537 0.0021 1.4
Threonine 0.78 1.2 �0.531 0.0009 1.3

a P-value determined from Student's t-test.
b Fold change between cancer and control serum calculated from the concentration mean values for each group; pTa: noninvasive papillary carcinomas; pT1: submucosal

invasive tumors; pT2: muscle invasive bladder cancer; VIP: variable influence on projection.
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invasive BC (pTa/pT1) and 12 serum samples from patients with
muscle invasive BC (pT2). Preliminary PCA analysis was performed
using the entire dataset of metabolite concentrations. PCA and
OPLS-DA score plots indicated relatively low separation between
the pTa/pT1 and pT2 stage of BC, with a few outliers that were
removed prior to the further OPLS-DA analysis. Figs. S5DeF contain
the 2D, 3D-PCA, and OPLS-DA scores plots of the two groups that
were classified by BC grades. The quality factors for the OPLS-DA
model included Q2 of 0.141 and R2Y of 0.347 and permutation test
P-value lower than 0.05 (Figs. S6C and D). The S-plot analysis of the
OPLS-DA model revealed the 12 serum metabolites that appeared
to bemost relevant for sample differentiation between pTa/pT1 and
pT2 cancer grade: histidine, alanine, tryptophan, glutamine,
glycine, methylhistidine, choline, isobutyrate, threonine, phenyl-
alanine, leucine, and 3-methyl-2-oxovalerate (Fig. S7C). All those
compounds corresponded to |P(corr)|> 0.05 and variable influence
on projection (VIP) > 1.2 and were found to be at a higher con-
centration in the sera of patients with noninvasive pTa/pT1 BC stage
(Fig. S7D). However, the ROC analysis narrowed this group down to
nine metabolites with an AUC greater than 0.75: histidine, alanine,
tryptophan, glutamine, glycine, methylhistidine, choline, iso-
butyrate, and threonine. The ROC curve analysis of nine potential
biomarkers is shown in Fig. S10. For those nine selected metabo-
lites, a ROC curve analysis was performed to assess the performance
of this model in distinguishing between pTa/pT1 and pT2 BC stages,
and yielded an AUC value of 0.844, which indicated the good
discriminatory ability of the model (Fig. S9E). The permutation test
based on the measured area under the ROC curve (AUC) for that
model yielded a P-value < 0.01 (Fig. S9F). The average of the pre-
dicted class probabilities of each sample across 100 cross valida-
tions and the associated permutation tests are shown in Figs. S9G
and H. Analysis of the changes in metabolite concentration for a
given stage of BC, i.e., pTa/pT1 versus pT2, reveals higher levels of
histidine, alanine, tryptophan, glutamine, glycine, methylhistidine,
choline, isobutyrate, and threonine in the serum samples of BC
patients with a pTa/pT1 stage of tumor compared to the sera of BC
patients with a pT2 stage tumor. The comparison of the three
groups of cancer stage (pT1 vs. pTa vs. pT2) did not reveal any
statistically significant differences.
6

3.4. Elemental profile of serum in BC determined by ICP-OES

The concentrations of chemical elements obtained from ICP-OES
analysis of 116 extracts of serum samples (65 BC and 51 NCs) were
subjected to statistical data analysis. A total of 12 elements were
identified and quantified. The mean concentration of each of these
elements is summarized in Tables S5 and S6. Prior to statistical
analysis, the data were randomly divided into two subsets: a
training set (control, n ¼ 42 and cancer, n ¼ 52) and a validation set
(control, n ¼ 10 and cancer, n ¼ 13). As shown in Fig. 3A, the PCA
score plot revealed a trend for separation between the two groups
in the training set. Results from the OPLS-DA analysis, shown in
Fig. 3B, provided a slightly clearer separation (compared to the PCA
analysis) between cancer and controls, and the validation param-
eters for the model were R2X and Q2 values of 0.334 and 0.476,
respectively (Fig. S11). The analysis of the VIP scores of the OPLS-DA
model in the training set is presented at Fig. 3C.

Three elements (Cu, Fe, and Li) could be used to distinguish be-
tween the two groups of study participants; however, only two of
them (Cu and Fe) were confirmed to be the most significant dis-
criminators following model validation assessments (Fig. S12). The
loading S-plot of OPLS-DA of the training set revealed that Fe was
negatively correlated with group separation, with �P(corr)
[1] < �0.5, and indicated that a significantly higher level of this
element was found in the serum of patients diagnosed with BC
compared with the control group. Subsequently, Li was found to be
positively correlated with the group separation, with P(corr)
[1] > 0.5, indicating that it was found in higher levels in the serum
samples of NCs. ROC analysis revealed that Fe was the most signifi-
cant, with an associated AUC value of 0.850, sensitivity of 0.8, and
specificity of 0.8, whereas for Li, the AUC value was 0.710, sensitivity
was 0.8, and specificity was 0.6. In addition, ROC curve analysis
assessing the performance of the ICP-OES model in distinguishing
between cancer and control samples was performed using only two
selected elements (Fe and Li). This analysis yielded an AUC value of
0.807 for the training set, which indicated good discriminatory po-
wer to separate the two (BC and NC) groups (Fig. 3D). The permu-
tation test yielded a significant P-value of <0.001. The average
accuracy amounted to a value of 0.728 (Fig. S13D).



Fig. 3. Two-dimensional (A) principal component analysis and (B) orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the tumor (violet) and control
(orange) serum samples for ICP-OES data in the training set. (C) The potential discriminatory elements identified from the variable importance in projection (VIP) scores derived
from the OPLS-DA model in the training set. (D) The receiving operator characteristic (ROC) curves of the combination of two differential elements, Fe and Li. (E and F) The box-and-
whisker plots of Fe and Li level values observed in the control and BC serum samples. PC: principal component.
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These statistical analyses demonstrated that differential levels
of Fe and Li are potentially good indicators of BC in human serum.
The results from the statistical analyses of these two selected ele-
ments are summarized in Table 1.

3.5. Untargeted metabolic profiling by PFL-2D GS LASiS AuNPs and
109AgNPs LDI-MS

In total, 335 and 650 features were detected in the serum
samples of 200 participants analyzed with PFL-2D GS LASiS AuNPs
and 109AgNPs LDI-MS. Statistical analysis was performed using data
randomly divided into two subsets: a training set (n ¼ 80 BC and
n ¼ 80 NCs) and a validation dataset (n ¼ 20 BC and n ¼ 20 NCs).

2D-PCA and OPLS-DA score plots of mass spectral features
created for PFL-2D GS LASiS 109AgNPs LDI-MS data revealed clear
discrimination between cancer and control serum samples in both
subsets (Fig. S14). The analysis of both subsets (training and vali-
dation set) indicated 216 common features with |p[1]| and |P(corr)|
above 0.5, of which 96 m/z values were more abundant in serum
from patients with BC compared with the control group, and 119
features displayed the opposite trend. The validation of the OPLS-
DA model using 2000 permutations resulted in R2Y and Q2 values
of 0.986 (P < 0.0005) and 0.982 (P < 0.0005) (Fig. S15). All 11
previously selected m/z mass spectral features were found to
exhibit AUC values of >0.73. Figs. S16A and D indicate the
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combination of m/z values, which is a better discriminator (AUC
>99% in the training and validation set) than independent evalua-
tion of each feature, which reinforces the improved capacity of
biomarker patterns to accurately distinguish between the BC and
NC groups. In the next step, putative identification of mass spectral
features was performed by searching various metabolite databases,
i.e., Human Metabolome Database [38], MetaCyc Metabolic
Pathway Database [39], LIPIDMAPS® Lipidomics Gateway [40], and
Metlin [41]. Seventeen mass spectral features were putatively
identified as naturally occurring metabolites in the human body.
Important mass spectral features and annotated metabolite IDs
resulting from the PFL-2D GS LASiS 109AgNPs LDI-MS analyses are
reported in Table S7. All statistical data with mean feature abun-
dance for control versus cancer serum samples based on PFL-2D GS
LASiS 109AgNPs LDI-MS in the training and validation datasets are
presented in Tables S8 and S9.

The acquired data from untargeted PFL-2D GS LASiS AuNPs LDI-
MS analysis were also analyzed using PCA and OPLS-DA to identify
novel metabolites. In both cases, score plots showed clear separa-
tion in both subsets, suggesting that the PFL-2D GS LASiS AuNPs
LDI-MS-based serum metabolomics model could be used to iden-
tify BC (Fig. S17). The S-plots derived from the OPLS-DA model
using the training set (R2Y ¼ 0.962, Q2 ¼ 0.955) and the validation
set (R2Y ¼ 0.982, Q2 ¼ 0.964) generated a list of mass spectral
features (m/z) of interest that were found to be important for group
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discrimination (Fig. S18). All relevant mass spectral features are
reported in Tables S10 and S11. The analysis of both subsets
(training and validation sets) identified 172 common features with |
p[1]| and |P(corr)| above 0.5, of which 44 m/z values were more
abundant in the sera of BC patients compared to the control group,
and 128 features exhibited the opposite trend. This analysis was
followed by a multivariate ROC analysis. As shown in Fig. S19, the
combination of mass spectral features in both subsets was found to
be a more powerful discriminator between control and BC serum
samples (AUC > 99%), compared with that of any individual mass
spectral feature.

The results presented above suggest that selected mass spectral
features can significantly increase the performance of the diag-
nostic model and can be used to distinguish cancer serum samples
from controls. Putative identifications of selected features allowed
for the identification of eight compounds that are often present in
the human body (Table S7).

3.6. Pathway analysis of potential cancer biomarkers

Metabolic pathway impact analysis suggested that 14 out of 25
metabolites identified in the NMR and LDI-MS analyses were
relevant to human metabolism. Seven pathways (glycine, serine
and threonine metabolism, glycerophospholipid metabolism,
propanoate metabolism, glutathione metabolism, pyruvate meta-
bolism, glyoxylate and dicarboxylate metabolism, and glycolysis/
gluconeogenesis) were significantly impacted in BC compared with
the controls. The results from this pathway impact analysis are
shown in Fig. 4A and Table S12. The bubble area (Fig. 4A) reveals the
degree of impact on the pathway and the color represents the
significance (highest in red and lowest in white). Quantitative
enrichment analysis found 10 additional pathways relevant to BC,
i.e., amino sugar metabolism, aspartate metabolism, betaine
metabolism, ethanol degradation, fatty acid biosynthesis, methio-
nine metabolism, phosphatidylcholine biosynthesis, phosphati-
dylethanolamine biosynthesis, phospholipid biosynthesis, and
vitamin K (K1 and K2) metabolism (Fig. 4B and Table S13).

4. Discussion

In this study, NMR, ICP-OES, and LDI-MSwith both 109AgNPs and
AuNPs-based targets were employed to evaluate changes in serum
metabolite and element levels between patients with BC and con-
trols. BC is characterized by several metabolic changes that
Fig. 4. Pathway topology analysis of statistically significant metabolites in BC that were fou
Encyclopedia of Genes and Genomes pathway analysis. (B) Quantitative enrichment analys
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promote cancer cell proliferation and thus tumor growth [42].
These changes in metabolism provide an essential source of energy
for intracellular metabolism and building blocks for rapidly
dividing tumor cells. The Warburg effect, a hallmark of cancer cell
metabolic activity, involves aerobic glycolysis in the presence of an
aerobic environment and fully functioningmitochondria, and relies
on increased glucose uptake and the conversion of glucose to
lactate. This type of energy gain for cancer cells is much less energy
efficient than mitochondrial respiration (2 adenosine triphosphate
(ATP) vs. 36 ATP respectively) [43]. However, studies have shown
that the rate of glucose-to-lactate conversion is 10e100 faster
compared with that of the complete mitochondrial oxidation of
glucose [44]. Moreover, the decoupling of glycolysis from oxidative
phosphorylation offers a biosynthetic advantage for cancer cells by
enabling the increased production of diverse biosynthetic pre-
cursors [45].

In this study, we investigated the serum metabolic profiles
among LG BC, HG BC, non-muscle invasive bladder cancer (pTa/
pT1), muscle invasive BC (MIBC, pT2), and healthy subjects. The
OPLS-DA modeling of the 1H NMR metabolomics data revealed a
clear separation between the BC and control serum sample groups.
Metabolites with the highest AUC values (>0.82) included iso-
butyrate, pyroglutamate, propionate, choline, and acetate. The
differences in the concentration of pyroglutamate, acetate, propi-
onate, and choline were statistically significantly and higher in the
sera of healthy individuals, whereas isobutyrate concentrations
were much higher in the sera of BC patients.

Negative charges of short-chain fatty acids are considered to be
crucial metabolic and immune cell regulators [46]. Acetate plays a
key role in the metabolism of acetyl coenzyme A (acetyl-CoA),
bioenergetics, cell proliferation, and regulation [47]. In cells, acetate
is mainly used to generate acetyl-CoA through an ATP-dependent
reaction by acetyl-CoA synthetase. Tumor cells use acetate in the
form of acetyl-CoA, primarily for fuel or as a carbon source for lipid
synthesis [48]. Acetyl-CoA synthetase 2 (ACSS2), one of the en-
zymes capable of using acetate as a substrate, contributes to cancer
cell growth and is highly upregulated in multiple cancer types [49].
Based on these studies, we surmise that the lower levels of acetate
in the serum samples of patients with BC may be due to its sig-
nificant uptake and utilization by ACSS2 in cancer cells. Recently,
Lee et al. [50] reported that acetate in urine, along with four urine
metabolites, may contribute to the discrimination of different
urological cancers. Their research showed that acetate levels in
urine were slightly elevated in kidney cancer patients compared to
nd in the nuclear magnetic resonance and mass spectrometry (MS) datasets. (A) Kyoto
is based on Small Molecule Pathway Database.
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patients with bladder and prostate cancer. Unfortunately, these
results were not directly compared to those of a healthy control
group [50].

Other metabolites present at lower concentration in the sera of
BC cancer patients compared with healthy controls include choline
and propionate. Studies have shown that the consumption of
choline may protect against cancer [51]. Propionate, a metabolite
produced by the intestinal microbiota, reduces the proliferation of
cancer cells in the liver and the lungs [52,53]. Acetate and propio-
nate are the end-products of the indigestible carbohydrate
fermentation in the human colon, and are distributed systemically
via blood circulation. These compounds have been shown to exhibit
anti-inflammatory properties in immune cells, inhibit colon cancer
cell growth, and induce cancer cell death by apoptosis [53,54]. The
levels of serum propionate are also associated with circulating
immune cells in patients with multiple sclerosis, and lower serum
propionate levels were found in patients with multiple sclerosis
compared with the healthy controls [55]. In our study, the
increased absorption of propionate by cancer cells is reflected by
the lower propionate concentration in the sera of the patients with
BC. However, no study to date has focused on the role of propionate
in the progression of BC.

Choline is a water-soluble quaternary amine that is often
grouped with vitamin B owing to its chemical similarities, and is a
key nutrient for humans. This compound has various key functions
in the human body, especially with respect to neurochemical pro-
cesses [56]. Choline is involved in phospholipid production and
triglyceride metabolism, and is therefore necessary for the proper
structure and function of cell membranes. In this study, patients
with BC had lower serum levels of choline compared with the
controls, which could be a consequence of increased choline ab-
sorption by cancer cells. Our results are consistent with those of
other studies that have shown that cancer cells often increase the
synthesis of fatty acids; in turn, these can act as substrates for
phosphatidylcholine synthesis, which is increased in tumor cells
[57,58]. Furthermore, the increase in serum choline levels in cancer
patients is consistent with our previous study results, where
choline levels were found to be decreased in the sera of patients
with renal cell carcinoma compared with controls [59]. The oppo-
site situation was observed in urine, where urine choline levels
were increased in patients with BC [60,61].

Ohara et al. [62] revealed that isobutyrate exerted an anticancer
effect by suppressing the growth/metabolic networks supporting
colorectal cancer. Previously, Wang et al. [63] showed that the
levels of isobutyrate were lower in fecal samples of patients with
colorectal cancer compared to those of healthy control individuals.
To date, there is no report that isobutyrate is a potential biomarker
of BC. In our research, isobutyrate levels were found to be signifi-
cantly altered, as shown by the cancer-to-control mean concen-
tration (fold change) ratio of 1.9.

Pyroglutamate is a cyclized derivative of L-glutamate and is
related to the gamma-glutamyl cycle, which is the main pathway
for glutathione synthesis [64]. Glutathione is a major antioxidant
produced in the human body, the levels of which can drop
significantly as a result of oxidative stress or chemical exposure. In
the case of low glutathione levels, the level of pyroglutamate from
which it is reconstituted is also decreased [65]. Pyroglutamate was
found to be a promising biomarker for the diagnosis of nonalco-
holic liver disease [64]. Several studies have observed elevated
levels of pyroglutamate in the biofluids of patients with several
genetic disorders and an acetaminophen-induced metabolic dis-
order [66]. Most of the research devoted to urinary or serum
metabolomics of BC has suggested a higher level of pyroglutamate
in patients with BC compared with healthy controls [22,67].
However, both of these cited publications are based on GC-MS
9

results with derivatization, which can be considered inferior in
terms of quantitation compared to the measurement of unmodi-
fied extracts with NMR.

Fe is a crucial trace element in which the deficiency or excess is
associated with numerous disease states [68]. ICP-OES analysis
indicated an increase in serum Fe in patients with BC, which is
surprising, given that these patients often have micro/macro-
hematuria, so Fe deficiency would be expected [69]. However, the
higher level of Fe in serum of patients with BC may be explained by
the activation of mechanisms stimulating Fe absorption from the
gastrointestinal tract, which provides a possible compensation for
the level of Fe in the blood. Moreover, previous studies have sug-
gested that excess Fe in the sera of patients with cancer may be
associated with malignant transformation and cancer progression
[70]. In tumor tissues, rapid cell proliferation and increased DNA
synthesis are often observed, which require high Fe bioavailability.
In the human body, the main source of Fe in the blood is heme,
which is released following the breakdown of red blood cells [70].
Further, our results are consistent with earlier studies that reported
elevated serum Fe levels in various types of diseases, such as he-
patocellular carcinoma, lung cancer, and colorectal cancer [71].

Li is an alkali metal used to treat psychiatric disorders, and has
potential benefits for the treatment of leukemia or thyroid disor-
ders [72]. It inhibits several enzymes, including inositol mono-
phosphatase and glycogen synthase kinase-3 [73]. However, the
ingestion of Li causes many side effects, including hypercalcemia,
cardiovascular, and gastrointestinal and parathyroid disorders [74].
Recent studies demonstrated that Li uptake is associated with
reduced tumor incidence, probably through inhibited cell prolif-
eration, which may be linked to reduced DNA replication and S-
phase cell cycle arrest [75]. Wach et al. [29] detected significantly
increased concentration of Li in the sera of patients with BC
compared with healthy controls using ICP-OES.

Lower concentration of the serum amino acids histidine,
alanine, tryptophan, glutamine, glycine, and threonine in patients
with muscle invasive BC (pT2) in comparison to non-muscle inva-
sive BC (pTa/pT1) may suggest the higher uptake of these amino
acids and their potential role in protein synthesis underlying
muscle cancer invasion. This inference is supported by proteomic
studies that reported significant differences in tissue protein
expression, which were correlated with BC ability to invade into
muscle tissue [76]. Another possibility as to why these amino acids
are present at lower concentrations may be due to general state of
cachexia andmalnutrition observed in patients withMIBC, which is
usually a systemic disease and often manifests at a stage when
metastases are present. Interestingly, lower concentrations of
serum amino acids (leucine, histidine, alanine, and tyrosine) can be
also observed in LG BC when compared to HG BC. In healthy or-
ganisms, de novo lipogenesis is limited to hepatocytes and adipo-
cytes. Cancer cells may reactivate this anabolic pathway, which
relies on glucose, glutamine, and acetate to synthesize citrate. Both
acetate and citrate are substrates for extramitochondrial acetyl-CoA
production, which is essential for fatty acid and cholesterol
biosynthesis [57].

To date, several papers have focused on metabolite analyses in
urine and blood from BC patients in an effort to potentially differ-
entiate the different grades of this cancer. However, to our
knowledge, only two studies have explored the relationships be-
tween changes in metabolite levels in urine and different tumor
stages (Ta/Tis, T1, and >T2) [61,77]. At present, there are no reports
of serum profiling in patients with different types of BC, probably
owing to the fact that this type of analysis would require quite a
large group of patients and healthy controls.

A pilot urine analysis conducted by Kim et al. [67] in 2010
studied a relatively small group of patients and revealed slightly
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elevated levels of alanine, glutamine, leucine, tyrosine, and glycine
and slightly decreased levels of threonine and tryptophan in pa-
tients with BC compared with controls. Subsequent studies also
using GC-MS confirmed higher levels of alanine in the serum of the
healthy controls compared to patients with BC, but the levels of
alanine were not found to be potentially diagnostic of BC stages
[22]. In our study, a slightly lower concentration of alanine in the
serum of patients with BC was found compared to the control
group; however, this trend was not found to be statistically sig-
nificant in differentiating between the two groups. However, we
measured significantly lower levels of alanine in the sera of patients
with LG and pTa/pT1 BC, which has not been previously reported in
the literature.

Troisi et al. [22] obtained comparable results to Kim et al. [67]
study with respect to glutamine level changes, but also found
higher levels of threonine in the sera samples from the LG group
compared with the HG group, and a higher level of glycine in the
HG group compared with the LG group. The results from our study
indicated that differential concentrations of glycine, glutamine, and
threonine in human sera may be used as diagnostic markers and
may help distinguish between different stages of BC, as we have
found that thesemetabolites were present at higher concentrations
in the sera of patients with pTa/pT1 stage disease compared to
those with pT2 stage. Bansal et al. [24] undertook an NMR-based
study of serum metabolite profiles and identified glutamine as
one of three metabolites that can differentiate between LG and HG
BC, as it was reported to be slightly elevated in the sera of patients
with HG BC [24]. Our results on serum glutamine levels are
consistent with published studies, and suggest that elevated levels
of glutamine in the pTa/pT1 stage of BC may be the result of
increased glutaminolysis, which is observed in some types of tu-
mors as an importantmechanism to provide an additional source of
cellular energy [78].

Bansal et al. [24] also reported histidine as one of the six me-
tabolites that can distinguish patients with LG and HG BC from
healthy controls, andwas reported to be in higher concentrations in
the sera of LG BC patients compared to HG BC patients and healthy
controls. The authors’ finding about serum histidine levels was
consistent with that of our study, which found higher serum levels
of histidine in LG and pTa/pT1 BC cancer [24,79]. The link between
differential levels of serum histidine and BC progression, as well as
concentration changes in methylhistidine, tyrosine, leucine, and
tryptophan, has also been reported by Alberice et al. [80]. The au-
thors’ study reported elevated levels of these metabolites in the
sera of patients with bladder tumors compared to those of patients
with early stages of BC [80]. In contrast, an LC-MS-based study
reported lower levels of histidine in the urine of patients with BC
compared to healthy controls [56,81]. Moreover, Li et al. [60]
indicated an increased level of L-methylhistidine in the urine of
patients with BC. Histidine is a precursor for histamine synthesis in
a reaction catalyzed by histidine decarboxylase (HDC). The over-
expression of HDC has been observed in various cancers. Histidine
via histamine is associated with inflammation in the urinary
bladder, which is commonly associated with cancer development
in this organ [82].

Our research has shown a significant difference in serum leucine
levels in BC patients with LG compared to HG. In addition to the
research of Kim et al. [67] and Alberice et al. [80], the level of
leucine in patients with BC was also examined by Cao et al. [23],
who reported, using NMR, lower levels of leucine/isoleucine as well
as tyrosine and glycine in the sera of patients with HG BC compared
to LG BC, which was consistent with our findings. Another study,
conducted by Loras et al. [83], reported increased levels of tyrosine
and tryptophan in the urine of patients with BC compared to
10
healthy controls. Our research results are also consistent with those
of Yumba Mpanga et al. [84], which indicated significantly higher
levels of tryptophan in the urine of patients with HG BC compared
to LG BC group.

The use of the gold and silver-109-modified targets in LDI-MS
experiments allowed for direct measurement of serum samples
without analyte separation and extraction. Using this technique,
serum analysis allowed the identification of 13 compounds that
were found in greater concentrations in control serum samples
compared to those of patients with BC, and 12 compounds that
displayed the opposite trend; these included three compounds
found independently using both silver-109- and gold-based MS
methods. Most of these compounds were lipids, 12 of which
belonged to the class of sphingolipids, and the remaining contained
fatty acyls, saccharolipids, polyketides, nucleosides or nucleotides,
and others.

Lipid metabolism plays a key role in various processes associ-
ated with cancer cells. Fatty acids are the building blocks of com-
plex lipids, which are used for energy storage or as building blocks
of cell membranes [85]. As reported by many authors, BC initiation
and progression are associated with changes in lipid metabolism
[86]. Sphingolipids are a group of lipids comprising sphingoid bases
(i.e., set of aliphatic amino alcohols that include sphingosine) that
play an important role in regulation of diverse cellular processes
including cellular apoptosis, proliferation, angiogenesis, senes-
cence, and transformation [87]. The importance of sphingolipids in
the regulation of cancer growth and pathogenesis has been well
described in the literature [88]. The sphingolipid metabolism may
be responsible for the invasion and mobility of cancer cells in
muscle-infiltrating BC [89]. Human BC cells have also been shown
to upregulate the cannabinoid receptors 2, which induces cell
apoptosis by stimulating de novo ceramide synthesis [90].

Lastly, the gold- and silver-109-based LDI-MS spectral analyses
shown in this work have indicated a higher concentration of serum
cyanidin in healthy individuals. Cyanidin is classified as a natural
antioxidant present in both fruits and vegetables, and has confirmed
with anticancer properties. It has been reported to induce apoptosis
and differentiation in prostate and renal cancer cells [91,92].

5. Conclusion

We demonstrate that high-resolution NMR, ICP-OES, and gold-
and silver-109-based LDI-MS, together with multivariate statistics,
are powerful sets of tools for the characterization of the serum
metabolome and elemental differences in BC. With regard to
biomarker discovery using 1H NMR spectroscopy, four potentially
robust metabolic biomarkers were identified for 100 tumor serum
samples from patients with BC patients after comparison against
100 healthy controls owing to the excellent predictive ability of AUC
>0.999. Two elements (Fe and Li) exhibited significant concentra-
tion differences in the serum of NCs compared to that of patients
with BC, suggesting that they may serve as useful biomarkers of BC.
Additionally, 22 compounds (mainly lipids) were observed to
differentiate between cancer and control samples, as judged from
laser MS results. We also identified five metabolites that might be
used as potential biomarkers to distinguish LG and HG and nine
metabolites that may serve to differentiate between the pTa/pT1
and pT2 stages of BC. Our results suggest that differential serum
metabolite profiles and elements can help identify patients with BC
comparedwith NCs, with significant discriminating power between
different stages and grades of BC. Moreover, our findings demon-
strate that combining serummetabolite profiles and elements has a
stronger predictive value than either compound/element alone to
assess disease severity and progression in BC.
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