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Abstract
Introduction Kidney cancer is one of the most frequently diagnosed and the most lethal urinary cancer. Despite advances 
in treatment, no specific biomarker is currently in use to guide therapeutic interventions.
Objectives Major aim of this work was to perform metabolomic and elemental profiling of human kidney cancer and normal 
tissue and to evaluate cancer biomarkers.
Methods Metabolic and elemental profiling of tumor and adjacent normal human kidney tissue from 50 patients with kidney 
cancer was undertaken using three different analytical methods.
Results Five potential tissue biomarkers of kidney cancer were identified and quantified using with high-resolution nuclear 
magnetic resonance spectroscopy. The contents of selected chemical elements in tissues was analyzed using inductively 
coupled plasma optical emission spectrometry. Eleven mass spectral features differentiating between kidney cancer and nor-
mal tissues were detected using silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry.
Conclusions Our results, derived from the combination of ICP-OES, LDI MS and 1H NMR methods, suggest that tissue 
biomarkers identified herein appeared to have great potential for use in clinical prognosis and/or diagnosis of kidney cancer.
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1 Introduction

Kidney cancer is one of the most frequently diagnosed meta-
bolic diseases of the urinary tract. More than 400 thousand 
new cases of kidney cancer and nearly 180 thousand deaths 
occurred in 2018 (Bray et al., 2018). Based on histological 
classification, a number of different types of kidney cancers 
were classified including both benign tumors like adenoma, 

oncocytoma and angiomyolipoma (AML) and the most com-
mon malignant type of kidney cancer, renal cell carcinoma 
(RCC). RCC is accounting for approximately ninety per-
cent of all neoplasms originating from the kidney. There 
are three main types of RCC known, namely clear cell RCC 
(ccRCC), papillary RCC (pRCC) and chromophobe RCC 
(cRCC). Mentioned types may differ in stage, grade, and 
cancer-specific survival. Other subtypes of RCC are very 
rare and include angiomyolipoma (AML), collecting duct 
carcinoma (CDC), or simple renal cyst (SRC) (Hsieh et al., 
2017).

Currently, RCC diagnosis is based on magnetic resonance 
imaging, ultrasound examination or computed tomography. 
Unfortunately, more than 60% of RCC cases are diagnosed 
incidentally. This tumor is difficult to detect, especially in 
its early stages, due to the lack of characteristic symptoms 
including lack of the classic triad of visible haematuria, 
flank pain and palpable abdominal mass symptoms. Poor 
prognosis and high mortality rate are related to metasta-
ses and resistance to chemotherapy and radiotherapy. The 
5-year survival rates of patients with metastatic disease are 
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less than ten percent (Lim et al., 2013). In spite of great 
efforts there are still no clinically available biomarkers for 
early detection, diagnosis or prognosis of kidney cancers. 
Analysis of metabolic profiles from tissues and biofluids is 
a promising approach for the discovery of biomarkers that 
would enhance our abilities to predict cancer progression 
and to assess the effectiveness of cancer treatment (Gupta 
et al., 2020).

Over the past two decades, two major analytical platforms 
have been employed for metabolomic analysis of kidney can-
cer samples of various types: (i) mass spectrometry (MS) 
(Lin et al., 2012) and (ii) nuclear magnetic resonance (NMR) 
(Gao et al., 2012). Tissues from patients with kidney cancer 
have been studied using primarily mass spectrometry (Gupta 
et al., 2020). The Catchpole et al. was one of the first to 
use profiling of low molecular weight compounds, such as 
sugars, lipids and amino acids to characterize the metabolic 
signature of RCC (Catchpole et al., 2011). Later, various 
groups performed focused profiling studies based mainly on 
LC- and GC–MS approaches (Shim et al., 2014; Wettersten 
et al., 2015). Interestingly, there exist no published studies 
of laser mass spectrometry data of human tissue extracts to 
date.

Nuclear magnetic resonance-based metabolomic studies 
of RCC tissue samples are relatively rarely found in litera-
ture (Gao et al., 2008). Previously, 1H magic angle spin-
ning (MAS) NMR was used to analyze kidney carcinoma 
biopsy samples (Moka et al., 1998; Tate et al., 2000). To 
our knowledge, there is only one publication concerning the 
utilization of 1H NMR in the metabolomic analysis of human 
RCC tissues—in 2012 Gao et al. applied 1H NMR to the 
characterization of RCC metastases in tissue extracts (Gao 
et al., 2012). No published studies that combine both NMR, 
LDI MS obtained from tissues of patients with kidney cancer 
have been reported to date.

Many studies have suggested a relationship between toxic 
metals and trace elements (TMTE) and the development of 
carcinoma in humans (Mulware, 2013). Toxic elements 
can cause genetic and epigenetic effects that may result in 
increased risk of different cancer types (Mishra et al., 2014). 
ICP-OES is one the most frequently used approaches to 
determine metal elements and speciation in biological sam-
ples, and has been employed to assess the effects of TMTE 
on kidney tissue samples from patients with RCC (Abdel-
Gawad et al., 2020). The results showed that the differences 
in the concentration of TMTE between normal and malig-
nant tissue could be used as a biomarker of this disease.

In this study, we performed the first targeted and untar-
geted metabolomic and metallomic profiling of 100 human 
tissue samples using three different analytical platforms: 
NMR, ICP-OES and LDI MS. The value of laser des-
orption/ionization MS using a 109-silver nanoparticle-
enhanced steel target (109AgNPET LDI MS) approach for 

metabolomics has been demonstrated in the detection of 
metabolites in plant and human tissues (Arendowski et al., 
2018; Nizioł et al., 2019, Nizioł, Ossoliński, et al., 2020, 
2021; Nizioł, Sunner, et al., 2020).

2  Materials and methods

2.1  Materials and equipment

109AgNPET was prepared as described previously (Nizioł 
et al., 2013). 2,5-Dihydroxybenzoic acid (DHB) was pur-
chased from Aldrich. Silver-109 was purchased from BuyI-
sotope (Sweden). All solvents were of minimum ‘HPLC 
purity’, except for methanol and water (LCMS grade, Fluka) 
Deuterium oxide  (D2O) and 4,4-dimethyl-4-silapentane-
1-sulfonic acid (DSS) NMR reagents were purchased from 
Sigma Inc. Nitric acid 65% p.a EMSURE ISO and Hydrogen 
peroxide 30% p.a. EMSURE ACS ISO was purchased from 
Merck.

2.2  Collection of tissue samples

Tissue samples were collected from 50 kidney cancer 
patients (20 females, 30 males, average age 69) undergo-
ing surgical treatment, following detailed clinical question-
ing at John Paul II Hospital in Kolbuszowa (Poland). The 
study protocol was approved by local Bioethics Commit-
tee at the University of Rzeszow (Poland, permission no. 
2018/04/10). All the patients in this study were of Cauca-
sian race. All research was performed in accordance with 
relevant guidelines and regulations. Specimens and clini-
cal data from patients involved in the study were collected 
with informed consent. All laboratory test results (complete 
blood count, urine analysis, bleeding profile, kidney function 
tests, CRP) were within normal ranges. Each patient donated 
1  cm3 of renal cancer tissue (‘cancer’) dissected together 
with a small fragment of normal tissue (< 1  cm3, ‘controls’) 
removed ex vivo during radical nephrectomy. Samples were 
immediately frozen and stored at − 60 °C until further use. 
The pathological and clinical characteristics of the patients 
are presented in supplementary material table (Table S1).

2.3  Preparation of tissue extracts for NMR and LDI 
MS studies

A weighted amount (10–168 mg) of sectioned tissue was 
transferred to a 2 ml centrifuge tube, then 900 µl of a 1:2 
MeOH/CHCl3 (1:2, v/v) solution was added and homog-
enized with glass beads for 45 s. Next, a volume of 120 µl 
of cold  H2O was added to each tube and then again homog-
enized two times for 45 s with a 5-min break time. The sam-
ples were placed at − 20 °C for 1 h and then centrifuged at 
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14,000 × g for 10 min at 4 °C to remove cells and other pre-
cipitated material. The polar (upper) phase was transferred 
to new 1.5 ml microcentrifuge tube, similarly non-polar 
(lower) phase was transferred to new 1.5 ml microcentrifuge 
tube. Finally, from all resulting samples, 50 µl volumes were 
taken and used for 109AgNPET LDI MS analyses. The rest 
of the sample was lyophilized to complete dryness using a 
SpeedVac vacuum concentrator (ca. 1 mbar), with no heat. 
Dried material was re-suspended in 600 µL of NMR buffer 
consisting of 25 mM  NaH2PO4/Na2HPO4, 0.4 mM imida-
zole, 0.25 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid 
(DSS) in 90%  H2O/10%  D2O, pH 7.0. Following re-suspen-
sion, samples were centrifuged at 21,000 rpm for 1 min to 
pellet insoluble debris, and then transferred to 5 mm NMR 
tubes for NMR metabolomics analysis.

2.4  NMR spectra acquisition and data processing

NMR spectra acquisition, preprocessing and postprocessing 
were conducted as described recently (Nizioł, Ossoliński, 
et al., 2020; Nizioł, Sunner, et al., 2020). NMR data sets 
were normalized by tissue weight.

2.5  MS spectra acquisition and preprocessing

Volume of 0.3 µl of each sample was placed on a 109AgNPET 
target plate and allowed to evaporate to dryness at room tem-
perature, then target was inserted into a MALDI-type ToF/
ToF mass spectrometer. Laser desorption ionization mass 
spectrometry (LDI MS) experiments were performed with 
a Bruker Autoflex Speed ToF mass spectrometer in positive-
ion reflectron mode. The apparatus was using a SmartBeam 
II 355 nm laser. Laser impulse energy was approximately 
100–190 μJ, laser repetition rate of 1000 Hz. Deflection was 
set on m/z 80, measurements were made within m/z range of 
80–2000 Da. Spot of each extract was ablated by 20 k laser 
shots with a default random walk applied. All spectra were 
calibrated with silver ions: 109Ag+ to 109Ag10

+. The first ion 
source voltage was held at 19 kV, and the second 16.7 kV. 
Reflector voltages were 21 kV (first) and 9.55 kV (second). 
MS data sets were normalized by tissue weight. FlexAnaly-
sis 4.0 program was used for data processing and analysis.

2.6  ICP‑OES analysis

In order to determine the concentrations of major elements 
(Ca (calcium), Fe (iron), K (potassium), Na (sodium), Mg 
(magnesium)), minor elements (Mn (manganese),P (phos-
phorus), S (sulfur)) and trace elements (Cu (copper), and Zn 
(zinc)) in kidney cancer and normal tissue, 58 samples were 
taken for analysis with ICP-OES. All of the 58 samples were 
separated into three different groups according to similar 
mass. An analytical balance was used to verify sample mass. 

A 5 ml final solution volume was collected for all samples 
except for ten samples which had the highest mass; these 
resulted in a volume of 10 ml. The samples were weighted 
and placed in Teflon tubes (Savillex). 4 ml of  HNO3 and 
1 mL of  H2O2 were added to the highest mass samples, 
while 3 ml of  HNO3 and 0.5 ml of  H2O2 were added to 
all other samples. The teflon tubes were closed and placed 
on the heating plate at 100 °C for 24 h. Following 24 h of 
digestion, ultrapure water was added to achieve the stated 
final volume of 5 ml. All Teflon tubes were weighted using 
an analytical balance and masses recorded. The final solu-
tions were transferred to labeled flasks that had been washed 
with ultrapure water. The international standard NIST 1577c 
(bovine liver—NIST) was used between samples to moni-
tor the instrumental performance and for quality control. 
The major, minor and trace elements were analyzed using 
the Agilent 725 Inductively Coupled Plasma Optical Emis-
sion Spectrometer. ICP-OES parameters and associated ana-
lytical conditions are reported in Table S2 (Supplementary 
information).

2.7  Multivariate statistical analysis

Metabolite data was analyzed with the use of MetaboAnalyst 
software 4.0 (Chong et al., 2018). Data was log-transformed 
and auto-scaled prior to statistical analysis. Firstly, a total of 
99 1H NMR spectra were recorded on metabolite mixtures 
extracted from tissue samples of kidney cancer patients (49 
tumor tissues and 50 adjacent normal tissues), 100 LDI MS 
spectra were recorded for the same 50 patients and 50 ICP-
OES spectra were recorded for 58 kidney cancer patients 
(28 tumor tissues and 28 adjacent normal tissues). Result-
ing metabolite profiles from NMR, and MS and ICP-OES 
data sets were then subjected to unsupervised Principal 
Component Analysis (PCA). The separation between these 
two groups was examined Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA). The overall quality of 
the OPLS-DA models was assessed by examining the good-
ness of fit  (R2Y) and the predictive ability of the models 
 (Q2). S-plots were generated to identify metabolites whose 
level changes were most significantly responsible for groups 
separation. Metabolites with |p|> 0.05 (magnitude) and 
|p(corr)|> 0.5 (reliability) were considered as potential bio-
marker candidates to distinguish kidney cancer tissues from 
normal controls. To test the accuracy of the multivariate sta-
tistical models, and to rule out that the observed separation 
in the OPLS-DA is due to chance (p < 0.05), permutation 
tests were performed with 2000-fold repetition. Statistical 
significance of metabolite level differences was assessed 
with paired parametric t-test with Mann–Witney and Bon-
ferroni correction. P-values and false discovery rates (FDR; 
q-value) less than 0.05 were considered statistically signifi-
cant. In addition, receiver operating curve (ROC) analyses 
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with random forest algorithm were undertaken to evaluate 
the diagnostic value of all and selected metabolites, elements 
and mass features for all models. Chemometric tools such 
as 2D PCA and OPLS-DA were also used to assess meta-
bolic profile similarities and differences between malignant 
types of kidney cancer (ccRR, chRCC, pRCC, CDC, SRC) 
and benign (oncocytoma and AML). The relevant metabolic 
changes associated with age and gender were identified by 
one-way analysis of variance (ANOVA). To identify the 
most relevant metabolic pathways involved with kidney 
cancer, the metabolic pathway analysis was applied with 
MetaboAnalyst version 5.0 based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway library for Homo 
sapiens. Data was normalized with log-transformation 
and autoscaling. Enrichment analysis has been computed 
with global test. Topology analysis was based on Relative-
betweenness Centrality. Quantitative enrichment analysis 
was conducted based on Small Molecule Pathway Database 
(SMPD). Each pathway was classified according to statisti-
cal p-value, Holm p (p-value adjusted by Holm–Bonferroni 
method) and FDR (p-value adjusted using False Discovery 
Rate), calculated from pathway topology analysis.

3  Results

3.1  Distinguishing between kidney cancer 
and control samples by 1H NMR

98 metabolite extracts from frozen kidney tissue samples (49 
cancer and 49 control) were analyzed using high-resolution 
1D 1H NMR to identify potential discriminant biomarkers 
of kidney cancer. In total, 48 metabolites were identified and 
quantified in each tissue sample using 1H NMR spectroscopy 
and metabolite profiling using Chenomx. Figure 1 presents 
a representative overlay of control and kidney cancer patient 
NMR spectra (blue and red traces, respectively) showing 
similarity and differences in the raw spectral data (plots A 
and B). Visual comparison of the NMR spectra revealed sig-
nificant differences in individual metabolite levels between 
paired tissues.

Univariate and multivariate statistical analyses of metabo-
lite levels were employed to assess the discrimination accu-
racy between tumor and the paired adjacent normal tissue. 
These analyses also enabled identification of significantly 
elevated levels of polar small molecules in kidney cancer 
(Supplementary material Table S3). Metabolite concen-
trations obtained by NMR following log-transformation 
and auto-scaling were analyzed with principal component 
analysis (PCA) to assess whether the patient versus con-
trol groups could be separated based on distinct metabolite 
profiles. Resulting 2D and 3D PCA scores plots (Fig. 2a, b, 
respectively) showed that the metabolite profiles of cancer 

patients are to a large extent dissimilar from controls, with 
PC1 and PC2 accounting for 39.9% and 9.1% of the vari-
ance, respectively. Only few outliers were detected in the 
central 95% of the field of view. One pair of tissue samples 
identified as outliers was removed.

Group separations were also inspected using OPLS-DA 
which revealed a clear separation between kidney tumors and 
the paired adjacent tissues. The classification from OPLS-
DA score plot is shown in Fig. 2c. To evaluate the statistical 
robustness of this model 2000-permutation tests were con-
ducted. Decent discrimination was observed between kidney 
cancer and normal tissues from the same patient  (Q2 = 0.72, 
 R2Y = 0.894, p-value < 5E  −  04 (0/2000)), revealing 

Fig. 1  Representative 1D 1H NMR spectrum obtained from protein-
free, polar metabolite extracts of kidney tissue obtained from control 
and kidney cancer patients. a Expanded spectral region spanning 
the 1H chemical shift range of 0.85 ppm to 1.10 ppm, depicting the 
overlay of 50 NMR spectra obtained from healthy (blue traces) and 
cancer (red traces) kidney tissue, and illustrating no obvious spec-
tral difference between different sample types. b Expanded spectral 
region spanning the 1H chemical shift range of 2.00 ppm to 2.25 ppm, 
depicting the overlay of 50 NMR spectra obtained from healthy (blue 
traces) and cancer (red traces) kidney tissue, and illustrating obvious 
spectral difference between different sample types. c Characteris-
tic 1D 1H NMR spectrum of protein-free, polar metabolite mixtures 
extracted from kidney cancer tissue and spanning the 1H chemical 
shift range of ~ 1 to 8.5 ppm, with characteristic signals arising from 
specific metabolites labeled
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substantial differences in metabolic profiles of cancer and 
normal renal tissues (Fig.S1, Supplementary material).

An OPLS-DA statistical method referred to as S-plot was 
employed to identify metabolites present in significantly 
different levels in kidney tumors and adjacent normal tis-
sues. S-plot of kidney tumor tissues vs. control was shown 
in Fig. 2d. Higher values of |p(corr)| indicate metabolites 
that are more important to the classification. Variables with 
|p(corr)| value greater than 0.5 were considered significant. 
A paired t-test was performed for all variables. Five vari-
ables (listed in Table 1) were negatively correlated to group 
separation showing p(corr)[1] score of < − 0.5. Analysis of 
the S-score of the OPLS-DA model, combined with statisti-
cal paired t-test analysis (p values < 0.05) indicate these five 
metabolites responsible for differences (Fig. 2c; Table 1). 
OPLS-DA analysis revealed statistically lower levels of 
fumarate, leucine, sarcosine and phenylalanine in the cancer 
tissues compared to adjacent control tissues. Concentration 
data for the set of 48 metabolites with mean concentrations 
statistical parameters are reported in Table S3 (Supplemen-
tary material).

Next, univariate ROC curves were generated to char-
acterize the predictive value of selected metabolites 

independently. The quality of the ranking represents the 
area under the curve (AUC). The results of univariate ROC 
curve analyses indicated that in the tissue samples, all five 
previously selected metabolites (fumarate, leucine, sar-
cosine, tryptophan and phenylalanine) exhibit high AUC 
above 0.78. Among these metabolites, the best ROC analy-
ses with highest significance were achieved for fumarate 
(AUC = 0.918, specificity = 0.8 and a sensibility = 0.9), fol-
lowed by leucine (AUC = 0.898, specificity = 0.9 and a sen-
sibility = 0.9), sarcosine (AUC = 0.887, specificity = 0.9 and 
a sensibility = 0.9) and tryptophan (AUC = 0.857, specific-
ity = 0.8 and a sensibility = 0.9) The range of concentrations 
for two first individual metabolites in the tissue samples of 
cancer patients compared to normal controls is shown in 
Fig. 3a and b.

A multivariable ROC analysis was performed to further 
assess the predictive value of these metabolites as a group 
to discriminate between tumor and normal tissues of each 
patient. The classification model was built using the Meta-
boAnalyst software and it’s associated the random forest 
algorithm. Figure 3c demonstrated that using a combina-
tion of metabolite level changes was a better discrimina-
tor (AUC > 0.94) than comparing each metabolite level 

Fig. 2  Analysis of tissue 
metabolite profiles created for 
1H NMR data: a 2D PCA, b 3D 
PCA and c OPLS-DA scores 
plots of the tumor (red) and 
normal (green) tissue sam-
ples. d The OPLS-DA loading 
S-plot showing the distribution 
patterns of metabolites to the 
differences between control and 
tumor samples
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change separately. An excellent discriminating classifica-
tion was obtained when the three metabolites sarcosine, 
fumarate and leucine (AUC of 0.962) were considered all 
together, with a confidence interval (CI) from 0.904 to 
0.999 (Fig. 3d). ROC curve illustrating the performance 
of the NMR models in distinguishing between tumor and 
normal tissue using random forest algorithm on five cho-
sen potential metabolite biomarkers is shown in Fig. S2 
(Supplementary material). AUC of these five compounds 
was 0.969 demonstrating high specificity and sensitivity 
to distinguish the groups. The permutation test with pre-
dictive accuracy as performance measure and 1000 per-
mutations showed a p value < 0.001. The average of pre-
dicted class probabilities of each sample and the average 
accuracy from predictive accuracy test of the ROC curve 
show a good classification of samples. Most of the samples 
were classified in their respective group (Fig. S2, Supple-
mentary material). These results suggest that assessing the 
levels of these three specific metabolites in kidney tissue 
could significantly increase the diagnostic performance of 

this model and could be used as diagnostic biomarkers to 
distinguish with high specificity and sensitivity, cancer-
ous from healthy tissue in patients diagnosed with kidney 
cancer.

3.2  Distinguishing between type of kidney cancer 
with 1H NMR

1H NMR metabolomics analysis of tissue samples was 
employed to evaluate whether distinct metabolic trends 
allow to distinguish between types (benign and malignant) 
of kidney cancers. A 3D PCA scores plot revealing a good 
discrimination between benign and malignant cases is shown 
in Fig. 4a.

Comparing benign versus malignant tissue with OPLS-
DA revealed a very good discrimination between these two 
groups (Fig. 4b). Quality factors for this model were:  Q2: 
0.395 and  R2Y: 0.701 with p values based on permutation 
tests lower than 0.05. Detailed results are shown in sup-
plementary material Fig.S3 (Supplementary materials). 

Table 1  Summary of the subsets of potential biomarkers of kidney cancer (p-value < 0.05; |p(corr)|> 0.5)

a Experimental monoisotopic mass; bp-value determined from Student’s t-test, cfold change between normal and tumor tissue calculated from the 
tissue weight-normalized concentration (NMR and ICP-OES data) or abundance (LDI MS data) mean values for each group; dIdentified com-
pounds; ePutatively annotated compounds; fUnknown compounds

Comparison 
mode

Data set Metabolite/ele-
ment

m/za Adduct type Mass error 
[ppm]

AUC p(corr) P-valueb Fold  changec

Normal vs. 
Tumor

1H NMR Fumarated 0.91  − 0.681 4.1E − 11 3.1
Leucined 0.90  − 0.592 2.6E − 11 2.2
Sarcosined 0.89  − 0.617 7.7E − 09 3.8
Tryptophand 0.86  − 0.576 3.9E − 08 2.5
Phenylalanined 0.78  − 0.501 6.1E − 06 1.8

Benign vs. 
Malignant

1H NMR Glucosed 0.89 0.609 2.96E − 05 0.2
Creatined 0.77  − 0.575 7.36E − 03 3.9

Normal vs. 
Tumor

ICP-OES Znd 0.94  − 0.866 7.99E − 06 2.4
Sd 0.84  − 0.750 2.59E − 05 1.2
Nad 0.73  − 0.510 2.47E − 03 1.2

Normal vs. 
Tumor

109Ag LDI MS Hydroxyeicosa-
trienoic  acide

361.208 [C20H34O3 +  K]+  − 15.5 0.79  − 0.569 7.84E − 06 8.7

UNf 121.122 – – 0.78  − 0.586 1.34E − 05 42.3
Octanediole 147.137 [C8H18O2 +  H]+  − 6.5 0.77  − 0.524 2.36E − 05 6.9
Diethoxypen-

tanee
161.153 [C9H20O2 +  H]+  − 3.8 0.77  − 0.501 7.84E − 06 8.3

UNf 243.824 – – 0.77 0.518 1.03E − 05 0.8
UNf 331.568 – – 0.75  − 0.522 5.46E − 05 2.8
UNf 120.940 – – 0.76  − 0.516 9.39E − 06 1.7
Oxoalanined 141.991 [C3H5NO3 +  K]+ 6.3 0.84  − 0.568 8.95E − 07 4.0
UNf 142.057 – – 0.75 0.572 6.54E − 06 0.4
1-(Methyl-

thio)ethyl- 
-2-propenyl 
 disulfidee

181.015 [C6H12S3 +  H]+  − 13.2 0.75 0.569 2.35E − 06 0.3

UNf 491.781 – – 0.75 0.560 3.31E − 05 0.3
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Analysis of S-plots revealed that glucose and creatine are 
significant contributors to the separation between malig-
nant vs benign samples (Fig. 4c, Table 2). In this study glu-
cose was positively correlated with group separation with 
a p(corr)[1] score > 0.5 and creatine negatively correlated 
with a p(corr)[1] score < − 0.5. Biomarker candidates were 
further subjected to t-test analysis to assess the significance 
of altered levels of these metabolites in benign versus malig-
nant tissue samples. In total, 2 of the identified metabolites 
were found at statistically significant differential concentra-
tions (p < 0.05; q < 0.05 and |p(corr)|> 0.5), suggesting that 
examining the differential levels of glucose and creatine may 
be an effective way to identify malignant tissue and discrim-
inate from healthy tissue within tissue samples of kidney 
cancer patients. Univariable ROC curve analyses were con-
ducted to further assess the predictive value of these metabo-
lite level changes. AUC values for glucose were found to be 
as high as 0.894 (Fig. 4d) and 0.769 for creatine (Fig. 4c). 

Additionally, ROC curve for only these two selected metabo-
lites were constructed with an AUC value of 0.889 (Fig. S4, 
Supplementary material). The permutation based on meas-
ure area under ROC curve test showed a p value = 0.003. 
The average of predicted class probabilities of each sam-
ple across the 100 cross-validations indicates that most of 
the samples were classified in their respective group. The 
average accuracy based on 100 cross validations was 0.848. 
These results support that glucose and creatine may be good 
discriminating indicators of kidney tumor types.

3.3  Elemental profile of tissue in kidney cancer 
with ICP‑OES

Chemical elements concentrations obtained from ICP-OES 
experiments on 58 extracts of kidney tissue samples (28 
cancer and 28 control tissues) were subjected to statistical 
data analysis. Elemental mean concentrations in tumorous 
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and non-tumorous tissues are summarized in Table S4 (Sup-
plementary material) for each element. As shown in Fig. 5a, 
the 3D-PCA scores plot reveals a separation trend between 
the two groups. Results from OPLS-DA analysis, shown in 
Fig. 5b, provide a much clearer separation (compared to the 
PCA analysis) between tumor and normal tissues with high 
explanative and predictive parameters of this model:  R2X 
and  Q2 were 0.753 and 0.649 respectively (Fig.S5, Supple-
mentary material).

Elements of interest were selected from the S-plot profile, 
constructed from the OPLS-DA model (Fig. 5c). The load-
ing S-plot revealed that three variables were negatively cor-
related with group separation showing -p(corr)[1] < − 0.5. 
According to p-values and p(corr) scores, three discriminate 
variables (Na, S and Zn) were found to be potentially good 
discriminators of in kidney tissues (Table 1). ROC analysis 
revealed that zinc exhibited the highest significance with an 
AUC value of 0.948, sensitivity of 0.9, and specificity of 
0.9 (Fig. 5d), and sulfur exhibited an AUC value of 0.835, 
sensitivity of 0.8, and specificity of 0.9 (Fig. 5e). Further-
more, ROC curve plot illustrating the performance of the 

ICP OES model in distinguishing between tumor and nor-
mal tissue with only three selected elements (S, Zn, Na) 
was performed. AUC value was 0.953 which indicates very 
good discriminatory ability (Fig. S6, Supplementary mate-
rial). The permutation based on area under ROC curve test 
showed a p value < 0.001. The average of predicted class 
probabilities of each sample across the 100 cross-validations 
indicates that most of the samples were classified in their 
respective group. The average accuracy based on 100 cross 
validations was 0.899. Most of the samples were classified 
in their respective group (Fig.S5, supplementary material). 
Levels of sulfur and sodium were identified as potentially 
good indicators of kidney cancer, while zinc concentration 
could be considered an excellent kidney cancer biomarker.

3.4  Metabolic profiling of kidney cancer tissue 
with 109AgNPET LDI MS

Laser mass spectrometry-based approach was also applied 
to investigate the tissue metabolic profiles of patients with 
kidney cancer. Statistical analysis was performed separately 

Fig. 4  Discrimination between benign and malignant kidney cancer 
based on the metabolic profiles of kidney tissue analyzed by 1H NMR 
spectroscopy. a 3D PCA and b OPLS-DA scores plots generated from 
the NMR data of the benign (red) and malignant (green) tumors.  

c The OPLS-DA loading S-plot showing the distribution patterns of 
metabolites to the differences between benign and malignant samples; 
d, e ROC curves of metabolites significantly associated with differen-
tiation between types of kidney cancer
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for polar and non-polar metabolite extracts of kidney tissue. 
575 and 461 common features were detected in the non-polar 
and polar extracts of tissues samples, respectively of 50 
patients with kidney cancer by 109AgNPET LDI mass spec-
tral analyses. Spectral intensity data from LDI MS spectra 
was subjected to multivariate data analysis to assess whether 
these could discriminate between tissue types. 2D-PCA and 
OPLS-DA score plots were generated for the entire data sets, 
and 2D-PCA scores plots of mass spectral features revealed 
moderate discrimination between tumor and normal tissue 
(Fig.S7, supplementary material). Results from OPLS-DA 
analysis, shown in Fig.S7B, D (supplementary material), 
presented a clear separation between two groups suggest-
ing that the 109AgNPET LDI MS-based tissue metabolomics 
model can also be used to effectively identify discriminating 
metabolic differences that separate kidney tumor and nor-
mal tissues. All relevant spectral features and observations 
resulting from the 109AgNPET LDI MS-based metabolomics 
analyses are reported in Table 1.

Potential features for group separation of non-polar and 
polar extracts of tissue samples were subsequently identified 
by S-plot loading analysis of corresponding OPLS-DA mod-
els, and based on significance criterion of |p(corr)|> 0.5 and 
|p|> 0.05 (Fig.S8 A, D, Supplementary material). The S-plot 
loading for the non-polar extract analysis revealed one vari-
able as positively correlated with group separation, exhibit-
ing a + p(corr)[1] value > 0.5 and five variables as negatively 
correlated with group separation, and exhibiting a—p(corr)
[1] value < − 0.5. Resulting  R2Y and  Q2 parameters assess-
ing the validity of the OPLS-DA model consisted of 0.905 
(p-value < 5E − 04 (0/2000)) and 0.337 (p-value < 5E-04), 
respectively (Fig. S8 B, Supplementary material). Mean 
abundances of spectral features identified in the non-polar 
extracts of tissue samples are reported in Table S5 (Sup-
plementary material). The S-plot loading for the polar 
extracts revealed three variables as positively correlated with 
group separation and + p(corr)[1] > 0.5, and two negatively 
correlated with group separation and—p(corr)[1] < -0.5. 
Resulting  R2Y and  Q2 values were respectively 0.905 

Fig. 5  Tissue metallomic profiles based on ICP-OES. a 3D PCA 
and b OPLS-DA scores plots generated from the ICP-OES data of 
the tumor tissue (red) and adjacent control tissue (green) samples. c 
The OPLS-DA loading S-plot showing the distribution patterns of  

elements to the differences between tumor and control tissue samples; 
d, e ROC curves of chosen elements significantly associated with kid-
ney cancer
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(p-value < 5E − 04 (0/2000)) and 0.337 (p-value < 5E − 04), 
providing a robust indication of goodness of fit and predict-
ability of the two-class OPLSDA model (Fig.S8 E, Supple-
mentary material). Mean abundances of m/z variables iden-
tified to be significantly different in the non-polar extracts 
of tumor vs normal tissue samples are reported in Table S6 
(Supplementary material).

Selected m/z values were subjected to multivariate 
ROC curve analyses based on random forest algorithms. 
All eleven previously selected m/z mass spectral features 
were identified to exhibit high AUC values with an area 
under the curve > 0.75 (Fig.S9, Supplementary informa-
tion). This analysis was followed by a multivariate ROC 
analysis to assess whether groups of spectral features were 
better predictors compared to when features were analyzed 
separately. As shown in Figures S10 (Supplementary mate-
rial), the combination of mass features in non-polar extracts 
was found to be a better discriminator between healthy and 
malignant tissue than the individual analysis of each mass 
feature. A good classification was obtained with ten features 
(AUC of 0.82), with confidence intervals (CI) ranging from 
0.729 to 0.906. A good classification was also obtained for 
spectral features from polar extracts of kidney tissue, with 
ten of these features exhibiting AUC values of 0.818 and CI 
ranging from 0.705 to 0.911. For both MS models features 
with the highest ability of contributions to classification 
accuracy are shown in Fig.S10 B and D (Supplementary 
material). These results suggest that selected mass features 
can significantly increase the diagnostic performance of MS 
model and could be used as diagnostic biomarkers that sepa-
rate cancer tissue samples from normal with high specificity 
and sensitivity.

ROC curves illustrating the performance of the 
109AgNPET LDI MS model in distinguishing between tumor 
and normal tissue using random forest algorithm on six 
selected features from non-polar and five features from polar 
extracts of studied tissues were presented in figures S11 
and S12 (Supplementary material). Putative identifications 
were guided by searches on various metabolite databases i.a. 
HMDB (Wishart et al., 2007), MetaCyc (Caspi et al., 2018), 
LipidMaps (Sud et al., 2007), and Metlin (Smith et al., 
2005). Five tissue mass features were putatively identified 
as known metabolites. All important mass spectral features 
and metabolite ID resulting from the 109Ag LDI MS analyses 
are reported in Table 1.

3.5  Distinguishing between age and gender

To evaluate the significant changes between tissue extracts 
from patients of different sex and age the analysis of vari-
ance (ANOVA) was performed. The analysis of gender and 
age differentiation was performed for data obtained from 
all three analytical platforms. The analysis was performed 

using samples in four groups; for gender discrimination 
samples from female, female control, male and male con-
trol were used. For age discrimination samples from patients 
of age under 60 and over 60 were used. Data was presented 
in supplementary materials (Figures S13–S18). However, 
in all cases, no statistically significant differences were 
observed between patients of different sex and age. It has 
been observed that data from tumor tissue extracts within 
each group (male vs female and age > 60 vs age < 60) dif-
fered only compared to the adjacent extracts of control nor-
mal tissues. This is mainly due to the insufficient number of 
patients under 60 and of the female sex because the popula-
tion studied was relatively old and mainly male.

3.6  Pathway analysis of potential biomarkers

The most differentiating metabolites between kidney can-
cer and normal tissues among three analytical platforms 
were subjected to pathway analysis by MetaboAnalyst 5.0. 
However, only the compounds selected in the NMR analy-
sis turned out to be important in the metabolic pathways in 
the human body, therefore the quantitative data from this 
platform was used to identify the most relevant pathways 
involved in the kidney cancer. The concentrations of fuma-
rate, sarcosine, leucine, tryptophan and phenylalanine were 
subjected to pathway analysis and quantitative enrichment 
analysis using a MetaboAnalyst 5.0. 12 metabolic path-
ways, including tyrosine metabolism, arginine and proline 
metabolism, purine metabolism, citric acid cycle, urea cycle, 
aspartate metabolism, mitochondrial electron transport 
chain, Warburg effect, phenylalanine and tyrosine metabo-
lism, valine, leucine and isoleucine degradation, glycine and 
serine metabolism, methionine metabolism and tryptophan 
metabolism were significantly related to kidney cancer. The 
result of pathway analysis is shown in Fig. 6a and Table S7 
in Supplementary materials. Furthermore, in order to expand 
metabolomic analysis of pathway related to kidney cancer, 
the quantitative enrichment analysis module in MetaboAna-
lyst, with extensive list of pathways from SMPDB database 
was performed. Concentrations of 5 metabolites, identified 
from the global metabolomic profiling, were entered as 
input data. It was found that 6 additional pathways including 
aspartate metabolism, methionine metabolism, mitochon-
drial electron transport chain, purine metabolism, urea cycle 
and Warburg effect significantly related to kidney cancer 
(Fig. 6b; Table S8, Supplementary materials). The power 
of metabolic pathways analysis was confirmed by p-value 
Holm p-values and FDR of less than 0.001 for every path-
way (Tables S7 and S8, Supplementary material).
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4  Discussion

In this study, 1H NMR, ICP-OES and 109Ag LDI MS were 
employed to assess similarities and differences in metabo-
lite and selected chemical elements abundances between 
renal tumors and normal parenchymal tissue. 1H NMR 
metabolomics analysis revealed significant differences in 
the concentration of essential amino acid, including leu-
cine, tryptophan and phenylalanine. Essential amino acids 
cannot be synthetized de novo by the human cells thus must 
be provided by diet and intestinal microbiota. Rapid and 
uncontrolled proliferation of cancer requires increased levels 
of amino acids to be used as basic building blocks for the 
synthesis of new proteins. In this study, depletion of essen-
tial amino acids is reflected in decreased concentration of 
leucine, tryptophan and phenylalanine in cancer tissue. Our 
results are consistent with the findings of Jing et. al. who 
also showed decreased level of numerous amino acids in 
RCC tissue specimens (Jing et al., n.d.).

Decreased levels of tryptophan may also be associated 
with its excessive consumption. Tryptophan metabolism 
plays a major role in cancer resistance to immunothera-
peutic treatment, as it is metabolized to kynurenine via the 
kynurenine pathway. Kynurenine activates the transcrip-
tion factor aryl hydrocarbon receptor (AhR) which induces 
immunosuppression by disrupting the ability of dendritic 
cells and T cells to eliminate cancer cells. This may also par-
tially explain the high rate of IFNα therapy failure in RCC 
(Trott et al., 2016). Another amino acid derivative whose 
concentration was lower in RCC specimens is sarcosine, 
which can be converted to glycine by action of sarcosine 

dehydrogenase. It has been reported that elevated levels of 
sarcosine can be detected in the urine of the patients with 
prostate cancer (Sreekumar et al., 2009). However further 
studies failed to prove its value in prostate cancer diagnosis 
(Jentzmik et al., 2010).

ICP-OES analysis was conducted to assess potential 
differences in chemical elements abundance between can-
cer and control tissues. ICP-OES measurements revealed 
decreased concentrations of Zn, S and Na in the tissue of 
renal tumors. Numerous elements have been implicated in 
the process of tumorigenesis, as heavy metals like arsenic, 
cadmium, chromium, and nickel are considered carcinogenic 
in humans (Kim et al., 2015). On the other hand, metals 
like zinc (Zn) and sodium (Na) are considered essential 
for normal human body functions. Zinc is the second most 
abundant metal in the human body, and is essential for over 
300 enzyme functions including carbonic anhydrase, super-
oxide dismutase and alkaline phosphatase. Moreover, zinc 
is important in DNA and RNA metabolism, signal trans-
duction, gene expression and protein folding via action of 
zinc finger motifs. This study demonstrated a decreased 
concentration of zinc in kidney tumors when compared to 
normal renal parenchyma. Moreover, zinc showed highest 
predictive value of all detected elements/metabolites with 
AUC of 0.948. Two studies evaluating the zinc level in the 
kidney tissue reported decreased levels of zinc in cancer 
samples. However, this relation was found to be statistically 
non-significant due to the small group size of the studies 
(Dobrowolski et al., 2002). Studies by Abdel-Gawad, Reddy 
and Calvo reported a statistically significant increase in zinc 
concentration in RCC specimen (Abdel-Gawad et al., 2020; 

Fig. 6  Results of pathway topology analysis of selected five differen-
tial metabolites statistically significant in RCC (found in NMR spec-
tra). a Pathway analysis based on KEGG; bubble area donating to the 

impact of each pathway with color representing the significance from 
highest in red to lowest in white; b Quantitative enrichment analysis 
based on SMPDB
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Calvo et al., 2009; Reddy et al., 2003). On the other hand, 
studies by Dobrowolski et al. which evaluated zinc levels in 
kidney tissue reported a decreased level of zinc in cancer 
samples (Dobrowolski et al., 2002), providing cofounding 
results as to zinc level trends in cancer tissue.

Association between high concentration of heavy metals 
in cancer tissue and cancerogenesis have been extensively 
studied. Most studies agree that exposure to certain heavy 
metals, particularly arsenic, nickel, cadmium, chromium 
may increase the risk of cancer. Unfortunately, the causa-
tive mechanism is still unknown. Some studies hypothesize 
that heavy metals may induce cellular hypoxia through acti-
vation of hypoxia inducible factor 1 (Galanis et al., 2009; 
Osipyants et al., 2018). This may be important concerning 
pharmacological treatment of renal cancer which is based 
on the inhibition of HIF-1 induced overexpression of the 
products of tyrosine kinase incl. VEGF and PDGF. First line 
treatment of metastatic RCC is based on targeted therapy 
against tyrosine kinase and include tyrosine kinase inhibi-
tors (sunitynib, pazopanib, axitinib, cabozantinib, lenvatinib 
and tivozanib) and monoclonal antibodies targeting VEGF 
(bevacizumab) (Ljungberg et al., 2007) Therefore, it may be 
hypothesized that chelation of heavy metals which may act 
as HIF-1 activators could improve efficacy of the treatment. 
Another important question is why elevated concentration 
of heavy metals in cancer tissue is observed. Romaniuk et al. 
suggested that this may be due to an impaired excretion of 
metabolites and heavy metals by cancer cells (Romaniuk 
et al., 2017). However, in this study, we observed decreased 
concentration of metals like sodium and zinc in cancer tis-
sue. Sodium is the primary cation in the extracellular fluid 
and its main role is in regulation of water homeostasis 
between cells and extracellular space. This is made possible 
through a variety of sodium channels that operate between 
extra and intracellular space. This observed decrease in 
concentration of sodium concentration may be caused by 
dysfunction of those channels. Decreased concentration of 
zinc in cancer tissue was also observed by Dobrowolski et al. 
(2002) (Kwiatek et al., 1996) Studies have reported that zinc 
exerts a cytotoxic effect on cancer cells (Costello & Frank-
lin, 2005). Therefore, the decreased concentration of zinc 
in cancer tissue may be explained by an attempt to avoid 
cytotoxic effects on the malignant cells. Diagnosis of renal 
cell carcinoma subtype is based on histopathological evalua-
tion of resected/biopsied tissue. Heavy metals are ubiquitous 
in the human body and therefore are not specific for cancer 
tissue and therefore they cannot be utilized alone as cancer 
biomarkers. However, in combination with other metabolites 
they may provide unique information concerning prognosis 
and staging.

Sodium is the primary cation in the extracellular fluid 
(EF), which includes interstitial fluid—i.e. fluid surrounding 
cells and intravascular fluid (blood plasma). Blood plasma 

sodium level varies between 135 and 145 mmol/L, whereas 
intracellular levels are maintained at 12 mmol/L. Sodium’s 
major role is the regulation of water homeostasis in the 
human body, and is also essential for mediating electrical 
signaling of neuronal cells. However, in solid tumors, like 
kidney cancer, impaired growth of new blood vessels lead-
ing to hypoxia and themetabolic reprogramming of cancer 
cells favoring aerobic glycolysis (Warburg effect) leads to 
the development of an intracellular acidic environment. 
To maintain intracellular pH, excess  H+ must be secreted 
outside the cell or neutralized by importing bicarbonate 
 (HCO3

−). These processes are mediated by  Na+/H+ antiport. 
systems and  Na+,  HCO3

− co-transporters which are coupled 
to intracellular  Na+ transport (Stock & Pedersen, 2017). In 
this study we observed decreased concentration of sodium 
within kidney tumor tissue, reflecting changes in sodium 
levels in both extracellular and intracellular space. However, 
the intracellular volume fraction accounts for 80% of total 
tissue volume (Madelin & Regatte, 2013). Therefore, this 
concentration decrease reflects mainly a decrease of sodium 
in intracellular space, which could be due to impairment of 
sodium channel function in cancer cells.

109Ag LDI MS analysis revealed significance differences 
in abundance of 12 metabolites between kidney tumors and 
control. Six of them were putatively identified as: hydrox-
yeicosatetraenoic acid, octanediol, diethoxypentane, oxo-
alanine, 1-(methylthio)ethyl-2-propenyl disulfide, hydrox-
yeicosatetraenoic acid, octanediol, diethoxypentane and 
oxoalanine were found to be in higher concentration in can-
cer tissue whereas 1-(methylthio)ethyl-2-propenyl disulfide 
was higher in normal renal tissue.

Hydroxyeicosatetraenoic acid is an eicosanoid that is 
produced by enzymatic oxidation of arachidonic acid. It 
has been reported that 20-hydroxyeicosatetraenoic acid 
(20-HETE) is associated with cancerogenesis. Moreover, 
selective inhibitors of the 20-HETE-producing enzymes 
(CYP4A and CYP4F) can inhibit growth of numerous cell 
lines including renal cell carcinoma (Alexanian & Sorokin, 
2013). These findings are consistent with our observations 
that renal tumors contain higher levels of hydroxyeicosa-
tetraenoic acid compared to normal renal tissue.

In this study glucose and creatine concentration were 
shown to discriminate between benign and malignant kidney 
tumors, with higher glucose concentrations found in cancer-
ous tissue. Numerous studies have reported the accumula-
tion of glucose in RCC tumors as a result of the metabolic 
reprogramming of RCC cells. It is believed that this is due 
to enhanced uptake of glucose resulting from overexpression 
of GLUT-1 glucose transporters under hypoxic environment 
(Lucarelli et al., 2015; Nakaigawa et al., 2017; Popławski 
et al., 2017). This hypothesis is supported by Chan et al. who 
showed that inhibition of GLUT-1 transporters starves RCC 
cells by depleting glucose supply (Chan et al., 2011). These 
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observations also implicate that benign kidney tumors are 
more metabolically similar to normal tissue than malignant 
tumors.

In contrast to glucose, creatine was found in lower con-
centration in cancerous tissue. Creatine, a non-protein-
derived amino acid, is crucial for energy storage as phos-
phocreatine is used to regenerate ATP. Study conducted on 
mice by Biase et al. showed that creatine uptake is important 
for the anti-tumor activities of CD8 T-cells (Di Biase et al., 
2019). Lower concentration of creatine in cancer tissue may 
impair immune functions that are essential to fight cancer. In 
this study, a metabolite that the most discriminated between 
tumor and control tissue was fumarate. It was found in lower 
concentration in tumor tissue. The analysis of the biochemi-
cal pathways indicates that fumarate participates in ten meta-
bolic pathways including alanine, aspartate and glutamate 
metabolism, arginine and proline metabolism, aspartate 
metabolism, citrate cycle, mitochondrial electron transport 
chain, purine metabolism, pyruvate metabolism, tyrosine 
metabolism, urea cycle and is also important in Warburg 
effect. Another metabolite, sarcosine was significant in path-
ways such as glycine, serine and threonine metabolism and 
methionine metabolism. Leucine participates in significantly 
changed KEGG and SMPDB pathways of aminoacyl-tRNA 
biosynthesis, valine, leucine and isoleucine biosynthesis 
and degradation. Significant KEGG and SMPDB pathway 
including aminoacyl-tRNA biosynthesis, phenylalanine, 
tyrosine as well as tryptophan biosynthesis are related to 
phenylalanine.

5  Conclusion

This work has demonstrated that value of high-resolution 1H 
NMR, ICP-OES and 109AgNPET LDI MS, along with mul-
tivariate statistics to characterize kidney tissue metabolome 
and metallome differences between tumor and normal tissue 
of patients suffering from kidney cancer. With regard to bio-
marker discovery, five potentially robust metabolic biomark-
ers in 49 tumor tissue samples of kidney cancer patients and 
49 adjacent normal tissues treated as controls were identi-
fied using 1H NMR spectroscopy, while 11 mass spectral 
features were identified from nanoparticle-based LDI mass 
spectrometry analyses. The most important endogenous 
compounds and trace elements having bioactive properties 
and pharmacological applicability were discussed in details. 
Moreover, we also demonstrated the possibility of discrimi-
nating between different kidney cancer types using 1H NMR 
metabolomics. This study also supports the value of inte-
grated NMR and mass spectrometry to identify candidate 
biomarkers and characteristic changes in small molecule 

metabolite levels which could prove to be very valuable for 
use as diagnostics or to track disease progression, offering 
less invasive ways to screen patients with kidney cancer.
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