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a b s t r a c t

Kidney cancer is a disease diagnosed annually in 400,000 people for which there are no specific bio-
markers found to date. It is therefore important to search for new chemical compounds to detect cancer
state. Laser desorption/ionization mass spectrometry on gold nanoparticle-enhanced target (AuNPET)
method was used in this work for rapid metabolic analysis of blood serum of fifty patients with renal
cancer. Comparison with data from sera of fifty healthy volunteers allowed discovering potential bio-
markers of renal cell carcinoma (RCC). Statistical analysis of m/z values that had the greatest impact on
group differentiation allowed. Database search allowed providing assignment of signals for the most
promising eleven features among them: dihydrouracil, creatinine, glutamine, tyrosine, 2,3-
diaminosalicylic acid, 3-hydroxykynurenine, 2-hydroxylauroylcarnitine, melatonin glucuronide, palmi-
toyl glucuronide, triglyceride(52:4) or phosphatidylcholine(42:0). This work demonstrate that the dif-
ferences in metabolite profiles in serum of kidney cancer patients and that of healthy subjects could be
identified by gold nanostructures LDI MS e based metabolomics and exploited as metabolic serum
markers for the early detection of kidney cancer.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

According to GLOBOCAN, in 2018, there were approximately
400000 new cases of kidney cancer and more than 175000 deaths
due to this disease [1]. More than 80% of adult kidney cancers are
renal cell carcinomas (RCCs) [2], which are a heterogeneous group
of tumors classified by WHO into several subtypes: clear cell
(ccRCC), chromophobe RCC (cRCC) and papillary RCC (pRCC),
medullary and collecting duct, and other unclassified subtypes [3].
RCC can develop for a long time without clinical symptoms,
whereby more than half of the cases are diagnosed incidentally,
usually by medical imaging methods, and up to 20% of patients
have metastases at the time of diagnosis [4]. Thus early detection of
renal cell carcinoma is crucial for its treatment and it is important
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ndowski).
to develop new procedures for early detection of renal cell carci-
noma, among them the most important are based on specific
chemical compounds called biomarkers that might indicate a
development of tumor.

Proteomic approach predominates in current strategies of can-
cer biomarker search and although several RCC protein biomarkers
have been proposed, but they suffer from low sensitivity and
specificity [5]. Cancer is a disease that alters cell metabolism, so it
seems that the appropriate approachwill be themetabolic profiling
of kidney tissue and bioliquids such as serum and urine [6].

The most frequently used techniques for metabolomic profiling
of kidney cancer have been: LC-MS (liquid chromatography mass
spectrometry) [7,8], GC-MS (gas chromatography mass spectrom-
etry) often used with pre-column derivatization [9] and 1H NMR
(proton nuclear magnetic resonance) [10e12]. It should be
mentioned that mass spectrometry (MS) is the most commonly
used family of methods in cancer biomarker researchmainly due to
its high resolution and sensitivity compared to other methods.
Kidney cancer is considered a metabolomic disease, therefore a
growing number of studies focus on profiling of biofluids such as
plasma [12] and serum [13,14] can be found in literature.

Among the various MS techniques of ionization, matrix-assisted
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laser desorption/ionization (MALDI) technique deserves special
attention. Due to the soft ionization process, high mass determi-
nation accuracy and very high sensitivity over a wide mass range,
this method is among the best choices for biological material
analysis. MALDI MS method has already been used as a tool for
tumor marker research [15,16] including peptide and protein
profiling for renal cell carcinoma [17].

However, MALDI spectra contain a high chemical background
below m/z 1000 due to the use of organic matrices. For small
molecules, surface-assisted laser desorption/ionization (SALDI) [18]
solutions are generally better suited. As literature search prove,
gold nanostructures are among the most frequently used for laser
MS. Some of the recent applications of gold nanostructures in LDI
MS include nanoflowers of Au@MnO previously applied for analysis
of small and also large molecules of cancer cell lysates [19,20]. Kuo
group has used multilayer thin films of gold nanoparticles with a
thickness of 2.7 mm for the quantitative determination of bone
biomarker - hydroxyproline in blood of patients suffering from
osteoporosis [21]. AuNPs assisted LDI-MS imaging was reported for
metabolites, including neurotransmitters, fatty acids and nucleo-
bases, detected from mouse brain tissue [22,23]. Our group pre-
sented the advantages of gold-nanoparticle enhanced target
(AuNPET) for laser desorption/ionization mass spectrometry anal-
ysis and imaging of low molecular weight compounds of different
polarity in complex biological mixtures [24e28], also in kidney
tissue [29]. Compared to commonly used MALDI MS our method
has been proven to produce much lower chemical background,
allows much more precise internal calibration and is better for
medium and low polar compounds.

This work demonstrate the capabilities of AuNPET LDI MS
method for rapid metabolic screening of fifty serum samples of
patients with diagnosed renal cell carcinoma and statistical com-
parison with control group of fifty serum samples of healthy vol-
unteers in order to discovering of new candidates for biomarkers.

2. Experimental

2.1. Participants

Serum samples were obtained from fifty patients with diag-
nosed kidney cancer. Control was fifty serum samples from healthy
volunteers, for which the presence of renal tumors had been
excluded by abdominal ultrasound. Specimens and clinical data
from patients involved in the study were collected with written
consent. Patient who agreed to participate in the study donated
10 ml of blood according to standard medical procedure. All ex-
periments were performed in compliance with the local laws and
institutional guidelines (Rzesz�ow University of Technology bio-
logical material guidelines). Research protocol was approved by the
local bioethics committee at the University of Rzesz�ow (Poland).
Patient characteristics are provided in Table 1.

2.2. Materials & methods

Chloro(trimethylphosphite)gold(I) of 97þ% purity (Aldrich) was
used for nanoparticle synthesis. The pyridineeborane complex
(BH3:py) used was at ~8 M borane concentration (Aldrich). All
solvents was of HPLC quality and were purchased from Sigma-
Aldrich (Poland), except for 18 MU water which was produced
locally. Magnetic stainless steel plate of H17 gradewas made locally
and used with Bruker NALDI adapter.

2.3. Preparation of AuNPET target

The gold nanoparticle-covered target was prepared similarly to
the one described in our recent publication [30]. Stainless steel
plate of 35x45 mm size was inserted into a large Petri dish con-
taining acetonitrile (50 mL) and dissolved chloro(-
trimethylphosphite)gold(I) (25 mg). To this solution, 8M BH3:py
complex in pyridine (173 mL) was added. After 48 h of reaction,
target plate was washed several times with acetonitrile, wipedwith
cotton wool ball and washed three times with acetonitrile and
deionized water.

2.4. Sample preparation

Serum samples obtained from patients were immediately
frozen and stored at �60 �C. Prior to measurements, an unfreezing
step was performed in room temperature, followed by 500-times
dilution with ultrapure water. Volumes of 0.5 mL of urine solu-
tions were placed directly on target plate, air dried and inserted
into MS apparatus for measurements.

2.5. LDI MS experiment

Laser desorption/ionization mass spectrometry experiments
were performed using Bruker Autoflex Speed Time-of-Flight mass
spectrometer equipped with a SmartBeam II laser (355 nm) in
positive-ion reflectron mode. Measurement range was m/z
80e2000, suppression was turned on for m/z lower than 79. Laser
impulse energy was approximately 100e190 mJ and laser repetition
rate 1000 Hz. Number of laser shots was 20 000 (4x5000 shots) for
each sample spot. The first accelerating voltage was held at 19 kV
and the second ion source voltage at 16.7 kV. Reflector voltages
used were 21 kV (the first) and 9.55 kV (the second). The data was
calibrated with FlexAnalysis (version 3.3) using enhanced cubic
calibration model and analyzed with mMass 5.5.0-open source
program [31]. Mass calibration was performed using internal
standards (gold ions and clusters from Auþ to Au5

þ). Reproducibility
was tested by measuring triplicates and comparing signals in-
tensities for m/z values for ions: Auþ to Au5þ for ten cancer and ten
normal samples. All intensities were within 20% of mean value.

2.6. Data analysis

Database search of chemical compounds were carried out using
a custommade program for HumanMetabolome Database (HMDB)
[32] and LipidMaps [33] search. Theoretical m/z values were
confirmed by using ChemCalc program available online [34]. Sta-
tistical analysis of results was performed with the use of Metab-
oAnalyst 4.0 service [35]. Data was normalized by sum, cube root
transformed and default Pareto scaling was used. For creating
receiver operating characteristic (ROC) curve random forests has
been chosen as classification method and RandomForest was
selected as feature ranking method.

3. Results and discussion

The aim of the research was to find metabolites present in
serum that could be biomarkers for kidney cancer. For this purpose,
serum from fifty people with diagnosed kidney cancer and fifty
healthy volunteers was analyzed using laser desorption/ionization
mass spectrometry method based on gold nanoparticles surface
target (AuNPET). Spectra for randomly chosen five cancer and five
control samples are shown in Fig. 1. Obtained spectra from patients
and controls were compared with the aid of MetaboAnalyst 4.0
[35].

In order to estimate the degree of influence of method-related
spectral data over sample-related data statistical analysis was
performed. Principal component analysis (PCA), Orthogonal-



Table 1
Clinical characteristics of patients.

Patients

Total 50
Age (years) 35e89
Mean 62
Sex Male 30

Female 20
Stage (T) T1 33

T2 3
T3 10
T4 1
undefined 3

Nodes (N) N0 46
N1 1
undefined 3

Metastases (M) M0 42
M1 5
undefined 3

Grade (Fuhrman) I 7
II 17
III 13
IV 2
undefined 11

A. Arendowski et al. / International Journal of Mass Spectrometry 456 (2020) 116396 3
Orthogonal Projections to Latent Structures Discriminant Analysis
(OPLS-DA), Partial Least Squares - Discriminant Analysis (PLS-DA)
and Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)
statistical methods implemented in MetaboAnalyst web service
were used. In case of domination of method-related data or signals,
statistical analysis could not provide clear enough separation of
studied samples.

Analyzing Fig. 2, containing results of statistical analysis of blood
serum mass spectrometry data, can be concluded that only OPLS-
DA score plot (Fig. 2C) presents completely separated groups. The
other three of used statistical methods: PCA (Fig. 2A and B), PLS-DA
(Fig. 2DeF) and sPLS-DA (Fig. 2G and H), did not allow for complete
Fig. 1. Examples of AuNPET LDI MS spectra for five randomly chosen cancer (A) and cont
references to colour in this figure legend, the reader is referred to the Web version of this
separation of cancer patients and control group. These results are
not unexpected as cancer and control samples are very similar from
molecular point of view and usually complete separation in PCA is
not visible. Furthermore, studied cancer group originates from
patients with cancer of various stages and grades.

Based on PLS-DA, fold-change, t-tests and random forest clas-
sification statistical methods, m/z values that had the greatest
impact on group separation were obtained. Mass features were
assigned with the aid of HMDB [32] which allowed listing of 11
potential biomarkers shown in Table 2, which also includes a VIP
score, p-value and fold change between healthy controls and kid-
ney cancer for each of them. Random Forest classification method
allowed the Out-of-bag (OOB) error to be determined at the 0.18
level, correctly classifying healthy people to the control group in
80%, and people with diagnosed kidney cancer as patients in 84%,
based on all signals present in mass spectra.

Fig. 3 presents box plots and ROC curves for each of eleven m/z
values. The largest area under the curve (AUC) was recorded for m/z
398.23015 and is 0.728, while the smallest form/z 457.2586 is 0.588.
Ten of the metabolites (creatinine, glutamine, tyrosine, 2,3-
diaminosalicylic acid, 3-hydroxykynurenine, 2-hydroxylauroyl
carnitine, melatonin glucuronide, palmitoyl glucuronide, triglycer-
ide(52:4) and phosphatidylcholine(42:0)) shown inTable 2 showup-
regulation in serum samples from patients with kidney cancer, only
one has higher intensities in the control samples.

Dihydrouracil was the only compound showing down-
regulation in patients’ serum (Fig. 3A). It is an intermediate in the
reaction of uracil degradation catalyzed by dihydropyrimidine de-
hydrogenase. Studies on the activity of dihydropyrimidine dehy-
drogenase in patients with RCC showed its reduced activity of this
enzyme in the study group compared to the control [36], which
may explain the down-regulation in our samples.

The first m/z value for which up-regulation in cancer (Fig. 3B)
was observed - 152.0213 - was assigned to potassium adduct of
creatinine, a breakdown product of creatine phosphate in muscle.
rol (B) sera. Asterisks marks gold ions used for calibration. (For interpretation of the
article.)



Fig. 2. Graphical representation of statistical analysis of MS data: PCA e component 1 vs 2 (A) and vs 3 (B), OPLS-DA (C), PLS-DA e component 1 vs 2 (D), vs 3 (E), vs 4 (F) and sPLS-
DA component 1 vs 2 (G), vs 3 (H) and vs 4 (I). Red area represents data for controls while green for cancer patients.
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Increased blood creatinine levels are observed with chronic renal
failure [37]. This is due to damage to the functioning nephrons,
which can also occur with the development of a kidney tumor.
Higher creatinine levels were also seen in pancreatic cancer [38].
Two metabolites with higher intensities in cancer samples are
amino acids e glutamine and tyrosine. Up-regulation of serum
glutamine can be explained by the fact that some cancers, such as
renal cell carcinoma require exogenous glutamine for growth and
have reprogrammed glutamine metabolism [39]. Glutamine has
already been previously described as a potential biomarker for RCC
[40]. Tyrosine was detected in the serum of patients with kidney
cancer but either its level measured by NMR did not show a dif-
ference from the control [11] or decreased as during LC-MS analysis
[8]. Another compound putatively identified as 2,3-diamino
salicylic acid is a metabolite normally found in human blood and
urine [32] but has not yet been described as a biomarker of renal
cell carcinoma.

Hydroxykynurenine forwhich the observed area under the curve
is 0.645 (Fig. 3F) is a metabolite in the kynurenine pathway, the
major route of tryptophan degradation in mammals. Researchers



Table 2
List of ions and compounds found by statistical analysis of mass spectra.

Metabolite Ion formula Experimental m/z Calculated m/z Dm/z [ppm] Controls Patients VIP P-Value FCa Figure

Dihydrouracil [C4H6N2O2þH]þ 115.0518 115.0502 13.9 þ e 1.39 5.3E-3 1.23 3A
Creatinine [C4H7N3O þ K]þ 152.0213 152.0221 �5.3 e þ 1.38 1.4E-3 0.69 3B
Glutamine [C5H10N2O3þK]þ 185.0312 185.0323 �5.9 e þ 0.70 1.5E-4 0.82 3C
Tyrosine [C9H11NO3þNa]þ 204.0615 204.0631 �7.8 e þ 1.40 6.0E-5 0.53 3D
2,3-Diaminosalicylic acid [C7H8N2O3þK]þ 207.0192 207.0167 12.1 e þ 1.63 2.6E-6 0.51 3E
3-Hydroxykynurenine [C10H12N2O4þNa]þ 247.0705 247.0689 6.5 e þ 0.78 1.7E-2 0.51 3F
2-Hydroxylauroylcarnitine [C19H37NO5þK]þ 398.2302 398.2303 �0.3 e þ 0.98 1.4E-3 0.48 3G
Melatonin glucuronide [C19H24N2O8þH]þ 409.1582 409.1605 �5.6 e þ 1.03 3.3E-3 0.42 3H
Palmitoyl glucuronide [C22H42O7þK]þ 457.2586 457.2562 5.2 e þ 0.82 1.1E-2 0.55 3I
TG(52:4) [C55H100O5þK]þ 879.7081 879.7202 �13.8 e þ 1.88 1.4E-4 0.08 3J
PC(42:0) [C50H102NO7P þ Na]þ 882.7269 882.7286 �1.9 e þ 1.85 2.1E-4 0.07 3K

a Fold change between controls and cancer samples.

Fig. 3. Box plots and ROC curves for m/z values: 115.0518 (A), 152.0213 (B), 185.0312 (C), 204.0615 (D), 207.0192 (E), 247.0705 (F), 398.2302 (G), 409.1582 (H), 457.2586 (I), 879.7081
(J) and 882.7269 (K) respectively. Vertical axes of box plots are intensities after normalization.
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Fig. 4. Multivariate ROC curve based exploratory analysis based on 11-mass feature intensity data processed in MetaboAnalyst service, showing area under the curve (A) and
predicted class probabilities for each sample with labels for samples classified to the wrong groups (B). RCC are cancer and VSK e control samples.

A. Arendowski et al. / International Journal of Mass Spectrometry 456 (2020) 1163966
have observed a high incidence of abnormal excretion of tryptophan
metabolites in kidney cancer, indicating changes in renal function
due to the presence of a tumor [41], but so far no changes in the level
of 3-hydroxykynurenine in the blood of RCC patients have been
observed.

Metabolite whose potassium adduct has been attributed m/z
398.2302 is 2-hydroxylauroylcarnitine. This potential biomarker for
RCC with up-regulation has largest area under the curve equal
0.728 (Fig. 3G). The presence of acyl carnitines in higher concen-
trations than in the control group was previously found in the
tissues and urine of patients with kidney cancer [40,42]. A possible
explanation for these changes is that cancer cells require more
energy from fatty acid b-oxidation, which acyl carnitines are in-
termediates [43]. Another two metabolites are compounds
belonging to the group glucuronides e melatonin glucuronide and
palmitoyl glucuronide with AUC 0.669 (Figs. 3H) and 0.588 (Fig. 3I)
respectively, and showing higher intensities among cancer samples
compared to controls. Melatonin glucuronide is a metabolite of
melatonin, naturally occurring compound found in animals [32],
but not yet described as a potential RCC biomarker. Palmitoyl
glucuronide is a common liver metabolite of palmitic acid which is
excreted by kidneys [44] found by our group in kidney tissue but
showing down-regulation in the cancerous area [45].

Two lipid compounds were also found to be potential bio-
markers - triglyceride TG(52:4) and phosphatidylcholine PC(42:0).
TG presence in renal cell carcinoma is critical for sustained
tumorigenesis but tumor cell viability is incompletely understood
[46]. Studies have shown kidney tumor tissue contains twice the
amount of phosphatidylcholines compared to normal [47].

For all elevenmass features intensity table was created and then
receiver operating characteristic (ROC) analysis was performed in
MetaboAnalyst. The results of the analysis are presented in Fig. 4.
Area under the curve for the proposed biomarkers was found to be
0.841 (Fig. 4) thus they have high diagnostic accuracy to distinguish
patients with kidney cancer from the healthy people from control
group. Predicted class probabilities for each sample shown in
Fig. 4B were made on the basis of AUC. Cross-validation allowed for
correct classification 37 samples to be qualified as originating from
patients with kidney cancer, which gives 74% efficiency (sensitivity
of test) and 39 samples as derived from healthy volunteers, giving
78% correctness (specificity). Positive predictive value (PPV) of this
test is 77%, negative predictive value (NPV) is 75%, and accuracy is
equal to 76%.

Based on our recent publications [29,40] it can be concluded
that the change of lipid content is an important feature of RCC.
Accuracy of the model based on the two lipids proposed in this
article as potential biomarkers - triglyceride(52:4) and phosphati-
dylcholine(42:0) was tested. The area under the ROC curve plotted
for these two compounds was 0.717 (Supplementary materials S1).
A number of 32 samples were correctly certified as both true pos-
itive and true negative using this model (Supplementary materials
S2) that gives 76% accuracy.
4. Conclusions

Laser desorption/ionization mass spectrometry with gold
nanoparticle-enhanced SALDI-type target was used for rapid anal-
ysis of serum from50 patients with diagnosed kidney cancer and 50
healthy volunteers. Methodology allowed identification of up- and
downregulated eleven compounds that could potentially serve as
renal cancer biomarkers such as: dihydrouracil, creatinine, gluta-
mine, tyrosine, 2,3-diaminosalicylic acid, L-3-hydroxykynurenine,
2-hydroxylauroylcarnitine, melatonin glucuronide, palmitoyl
glucuronide, triglyceride(52:4) or phosphatidylcholine(42:0).
Multivariate ROC analysis proposed biomarkers gave an area under
the curve equal to 0.841, and correct classification of patients and
healthy people (accuracy) at 76%. Statistical analysis allowed to
distinguish the study group from the control.
CRediT authorship contribution statement

Adrian Arendowski: Formal analysis, Investigation, Writing -
original draft, Visualization, Funding acquisition. Krzysztof Osso-
li�nski: Resources. Joanna Nizioł: Methodology, Resources, Writing
- review & editing. Tomasz Ruman: Conceptualization, Method-
ology, Writing - review & editing, Supervision.



A. Arendowski et al. / International Journal of Mass Spectrometry 456 (2020) 116396 7
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Scientific work funded by Ministry of Science and Higher Edu-
cation Republic of Poland from the budget for science in the years
2016e2020 as a research project within the program "Diamond
Grant" (project no. 0184/DIA/2016/45). Mr Dominik Ruman is
acknowledged for creating MS search engine of chemical
compounds.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.ijms.2020.116396.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries, CA Canc. J. Clin. 68 (2018)
394e424, https://doi.org/10.3322/caac.21492.

[2] W.-H. Chow, L.M. Dong, S.S. Devesa, Epidemiology and risk factors for kidney
cancer, Nat. Rev. Urol. 7 (2010) 245e257, https://doi.org/10.1038/
nrurol.2010.46.

[3] H. Moch, An overview of renal cell cancer: pathology and genetics, Semin.
Canc. Biol. 23 (2013) 3e9, https://doi.org/10.1016/j.semcancer.2012.06.006.

[4] U. Capitanio, F. Montorsi, Renal cancer, Lancet 387 (2016) 894e906, https://
doi.org/10.1016/S0140-6736(15)00046-X.

[5] A.L. Pastore, G. Palleschi, L. Silvestri, D. Moschese, S. Ricci, V. Petrozza,
A. Carbone, A. Di Carlo, Serum and urine biomarkers for human renal cell
carcinoma, Dis. Markers 2015 (2015) 1e9, https://doi.org/10.1155/2015/
251403.

[6] M.S. Monteiro, M. Carvalho, M. de Lourdes Bastos, P.G. de Pinho, Biomarkers in
renal cell carcinoma: a metabolomics approach, Metabolomics 10 (2014)
1210e1222, https://doi.org/10.1007/s11306-014-0659-5.

[7] L. Lin, Z. Huang, Y. Gao, Y. Chen, W. Hang, J. Xing, X. Yan, LC-MS-based serum
metabolic profiling for genitourinary cancer classification and cancer type-
specific biomarker discovery, Proteomics 12 (2012) 2238e2246, https://
doi.org/10.1002/pmic.201200016.

[8] L. Lin, Z. Huang, Y. Gao, X. Yan, J. Xing, W. Hang, LC-MS based serum
metabonomic analysis for renal cell carcinoma diagnosis, staging, and
biomarker discovery, J. Proteome Res. 10 (2011) 1396e1405, https://doi.org/
10.1021/pr101161u.

[9] B.B. Misra, R.P. Upadhayay, L.A. Cox, M. Olivier, Optimized GCeMS metab-
olomics for the analysis of kidney tissue metabolites, Metabolomics 14 (2018)
75, https://doi.org/10.1007/s11306-018-1373-5.

[10] H. Gao, B. Dong, J. Jia, H. Zhu, C. Diao, Z. Yan, Y. Huang, X. Li, Application of
ex vivo 1H NMR metabonomics to the characterization and possible detection
of renal cell carcinoma metastases, J. Canc. Res. Clin. Oncol. 138 (2012)
753e761, https://doi.org/10.1007/s00432-011-1134-6.

[11] A.N. Zira, S.E. Theocharis, D. Mitropoulos, V. Migdalis, E. Mikros, 1 H NMR
metabonomic analysis in renal cell carcinoma: a possible diagnostic tool,
J. Proteome Res. 9 (2010) 4038e4044, https://doi.org/10.1021/pr100226m.

[12] F. Süllentrop, D. Moka, S. Neubauer, G. Haupt, U. Engelmann, J. Hahn,
H. Schicha, 31P NMR spectroscopy of blood plasma: determination and
quantification of phospholipid classes in patients with renal cell carcinoma,
NMR Biomed. 15 (2002) 60e68, https://doi.org/10.1002/nbm.758.

[13] L. Lin, Q. Yu, X. Yan, W. Hang, J. Zheng, J. Xing, B. Huang, Direct infusion mass
spectrometry or liquid chromatography mass spectrometry for human
metabonomics? A serum metabonomic study of kidney cancer, Analyst 135
(2010) 2970e2978, https://doi.org/10.1039/C0AN00265H.

[14] F. Zhang, X. Ma, H. Li, G. Guo, P. Li, H. Li, L. Gu, X. Li, L. Chen, X. Zhang, The
predictive and prognostic values of serum amino acid levels for clear cell renal
cell carcinoma, Urol. Oncol. Semin. Orig. Investig. 35 (2017) 392e400, https://
doi.org/10.1016/j.urolonc.2017.01.004.

[15] H. Bateson, S. Saleem, P.M. Loadman, C.W. Sutton, Use of matrix-assisted laser
desorption/ionisation mass spectrometry in cancer research, J. Pharmacol.
Toxicol. Methods 64 (2011) 197e206, https://doi.org/10.1016/j.vascn.
2011.04.003.

[16] M.A. Merlos Rodrigo, O. Zitka, S. Krizkova, A. Moulick, V. Adam, R. Kizek,
MALDI-TOF MS as evolving cancer diagnostic tool: a review, J. Pharmaceut.
Biomed. Anal. 95 (2014) 245e255, https://doi.org/10.1016/j.jpba.2014.03.007.

[17] E. Gianazza, C. Chinello, V. Mainini, M. Cazzaniga, V. Squeo, G. Albo,
S. Signorini, S.S. Di Pierro, S. Ferrero, S. Nicolardi, Y.E.M. van der Burgt,
A.M. Deelder, F. Magni, Alterations of the serum peptidome in renal cell
carcinoma discriminating benign and malignant kidney tumors, J. Proteom. 76
(2012) 125e140, https://doi.org/10.1016/j.jprot.2012.07.032.

[18] J. Sunner, E. Dratz, Y.-C. Chen, Graphite surface-assisted laser desorption/
ionization time-of-flight mass spectrometry of peptides and proteins from
liquid solutions, Anal. Chem. 67 (1995) 4335e4342, https://doi.org/10.1021/
ac00119a021.

[19] I. Ocsoy, B. Gulbakan, M.I. Shukoor, X. Xiong, T. Chen, D.H. Powell, W. Tan,
Aptamer-conjugated multifunctional nanoflowers as a platform for targeting,
capture, and detection in laser desorption ionization mass spectrometry, ACS
Nano 7 (2013) 417e427, https://doi.org/10.1021/nn304458m.

[20] H.N. Abdelhamid, H.-F. Wu, Gold nanoparticles assisted laser desorption/
ionization mass spectrometry and applications: from simple molecules to
intact cells, Anal. Bioanal. Chem. 408 (2016) 4485e4502, https://doi.org/
10.1007/s00216-016-9374-6.

[21] X.-Y. Pan, C.-H. Chen, Y.-H. Chang, D.-Y. Wang, Y.-C. Lee, C.-C. Liou, Y.-X. Wang,
C.-C. Hu, T.-R. Kuo, Osteoporosis risk assessment using multilayered gold-
nanoparticle thin film via SALDI-MS measurement, Anal. Bioanal. Chem. 411
(2019) 2793e2802, https://doi.org/10.1007/s00216-019-01759-5.

[22] H.-W. Tang, M.Y.-M. Wong, W. Lam, Y.-C. Cheng, C.-M. Che, K.-M. Ng, Mo-
lecular histology analysis by matrix-assisted laser desorption/ionization im-
aging mass spectrometry using gold nanoparticles as matrix, Rapid Commun.
Mass Spectrom. 25 (2011) 3690e3696, https://doi.org/10.1002/rcm.5281.

[23] H.N. Abdelhamid, Nanoparticle assisted laser desorption/ionization mass
spectrometry for small molecule analytes, Microchim. Acta 185 (2018) 200,
https://doi.org/10.1007/s00604-018-2687-8.

[24] J. Sekuła, J. Nizioł, M. Misiorek, P. Dec, A. Wrona, A. Arendowski, T. Ruman,
Gold nanoparticle-enhanced target for MS analysis and imaging of harmful
compounds in plant, animal tissue and on fingerprint, Anal. Chim. Acta 895
(2015) 45e53, https://doi.org/10.1016/j.aca.2015.09.003.

[25] A. Arendowski, T. Ruman, Laser desorption/ionisation mass spectrometry
imaging of European yew (Taxus baccata) on gold nanoparticle-enhanced
target, Phytochem. Anal. 28 (2017) 448e453, https://doi.org/10.1002/
pca.2693.

[26] A. Arendowski, J. Szulc, J. Nizioł, B. Gutarowska, T. Ruman, Metabolic profiling
of moulds with laser desorption/ionization mass spectrometry on gold
nanoparticle enhanced target, Anal. Biochem. 549 (2018) 45e52, https://
doi.org/10.1016/j.ab.2018.03.016.

[27] A. Arendowski, T. Ruman, Lysine detection and quantification by laser
desorption/ionization mass spectrometry on gold nanoparticle-enhanced
target, Anal. Methods 10 (2018) 5398e5405, https://doi.org/10.1039/
C8AY01677A.

[28] K. Ossoli�nski, J. Nizioł, A. Arendowski, A. Ossoli�nska, T. Ossoli�nski, J. Kucharz,
P. Wiechno, T. Ruman, Mass spectrometry-based metabolomic profiling of
prostate cancer - a pilot study, J. Canc. Metastasis Treat. 5 (2019) 1, https://
doi.org/10.20517/2394-4722.2018.63.

[29] J. Nizioł, K. Ossoli�nski, T. Ossoli�nski, A. Ossoli�nska, V. Bonifay, J. Sekuła,
Z. Dobrowolski, J. Sunner, I. Beech, T. Ruman, Surface-transfer mass spec-
trometry imaging of renal tissue on gold nanoparticle enhanced target, Anal.
Chem. 88 (2016) 7365e7371, https://doi.org/10.1021/acs.analchem.6b01859.

[30] J. Sekuła, J. Nizioł, W. Rode, T. Ruman, Gold nanoparticle-enhanced target
(AuNPET) as universal solution for laser desorption/ionization mass spec-
trometry analysis and imaging of low molecular weight compounds, Anal.
Chim. Acta 875 (2015) 61e72, https://doi.org/10.1016/j.aca.2015.01.046.

[31] T.H.J. Niedermeyer, M. Strohalm, mMass as a software tool for the annotation
of cyclic peptide tandem mass spectra, PLoS One 7 (2012), e44913, https://
doi.org/10.1371/journal.pone.0044913.

[32] D.S. Wishart, Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. V�azquez-Fresno,
T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour,
M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-
Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach,
A. Scalbert, HMDB 4.0: the human metabolome database for 2018, Nucleic
Acids Res. 46 (2018) D608eD617, https://doi.org/10.1093/nar/gkx1089.

[33] E. Fahy, M. Sud, D. Cotter, S. Subramaniam, LIPID MAPS online tools for lipid
research, Nucleic Acids Res. 35 (2007) W606eW612, https://doi.org/10.1093/
nar/gkm324.

[34] L. Patiny, A. Borel, ChemCalc: a building block for tomorrow’s chemical
infrastructure, J. Chem. Inf. Model. 53 (2013) 1223e1228.

[35] J. Chong, D.S. Wishart, J. Xia, Using MetaboAnalyst 4.0 for comprehensive and
integrative metabolomics data analysis, Curr. Protoc. Bioinf. 68 (2019) e86,
https://doi.org/10.1002/cpbi.86.

[36] Y. Mizutani, H. Wada, O. Yoshida, M. Fukushima, H. Nakanishi, M. Nakao,
T. Miki, Significance of dihydropyrimidine dehydrogenase activity in renal cell
carcinoma, Eur. J. Canc. 39 (2003) 541e547, https://doi.org/10.1016/S0959-
8049(02)00730-X.

[37] T. Kikuchi, Y. Orita, A. Ando, H. Mikami, M. Fujii, A. Okada, H. Abe, Liquid-
chromatographic determination of guanidino compounds in plasma and
erythrocyte of normal persons and uremic patients, Clin. Chem. 27 (1981)
1899e1902.

[38] D. OuYang, J. Xu, H. Huang, Z. Chen, Metabolomic profiling of serum from
human pancreatic cancer patients using 1H NMR spectroscopy and principal
component analysis, Appl. Biochem. Biotechnol. 165 (2011) 148e154, https://
doi.org/10.1007/s12010-011-9240-0.

[39] O.A. Aboud, S.L. Habib, J. Trott, B. Stewart, S. Liang, A.J. Chaudhari, J. Sutcliffe,

https://doi.org/10.1016/j.ijms.2020.116396
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/nrurol.2010.46
https://doi.org/10.1038/nrurol.2010.46
https://doi.org/10.1016/j.semcancer.2012.06.006
https://doi.org/10.1016/S0140-6736(15)00046-X
https://doi.org/10.1016/S0140-6736(15)00046-X
https://doi.org/10.1155/2015/251403
https://doi.org/10.1155/2015/251403
https://doi.org/10.1007/s11306-014-0659-5
https://doi.org/10.1002/pmic.201200016
https://doi.org/10.1002/pmic.201200016
https://doi.org/10.1021/pr101161u
https://doi.org/10.1021/pr101161u
https://doi.org/10.1007/s11306-018-1373-5
https://doi.org/10.1007/s00432-011-1134-6
https://doi.org/10.1021/pr100226m
https://doi.org/10.1002/nbm.758
https://doi.org/10.1039/C0AN00265H
https://doi.org/10.1016/j.urolonc.2017.01.004
https://doi.org/10.1016/j.urolonc.2017.01.004
https://doi.org/10.1016/j.vascn.2011.04.003
https://doi.org/10.1016/j.vascn.2011.04.003
https://doi.org/10.1016/j.jpba.2014.03.007
https://doi.org/10.1016/j.jprot.2012.07.032
https://doi.org/10.1021/ac00119a021
https://doi.org/10.1021/ac00119a021
https://doi.org/10.1021/nn304458m
https://doi.org/10.1007/s00216-016-9374-6
https://doi.org/10.1007/s00216-016-9374-6
https://doi.org/10.1007/s00216-019-01759-5
https://doi.org/10.1002/rcm.5281
https://doi.org/10.1007/s00604-018-2687-8
https://doi.org/10.1016/j.aca.2015.09.003
https://doi.org/10.1002/pca.2693
https://doi.org/10.1002/pca.2693
https://doi.org/10.1016/j.ab.2018.03.016
https://doi.org/10.1016/j.ab.2018.03.016
https://doi.org/10.1039/C8AY01677A
https://doi.org/10.1039/C8AY01677A
https://doi.org/10.20517/2394-4722.2018.63
https://doi.org/10.20517/2394-4722.2018.63
https://doi.org/10.1021/acs.analchem.6b01859
https://doi.org/10.1016/j.aca.2015.01.046
https://doi.org/10.1371/journal.pone.0044913
https://doi.org/10.1371/journal.pone.0044913
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1093/nar/gkm324
https://doi.org/10.1093/nar/gkm324
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref34
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref34
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref34
https://doi.org/10.1002/cpbi.86
https://doi.org/10.1016/S0959-8049(02)00730-X
https://doi.org/10.1016/S0959-8049(02)00730-X
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref37
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref37
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref37
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref37
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref37
https://doi.org/10.1007/s12010-011-9240-0
https://doi.org/10.1007/s12010-011-9240-0


A. Arendowski et al. / International Journal of Mass Spectrometry 456 (2020) 1163968
R.H. Weiss, Glutamine addiction in kidney cancer suppresses oxidative stress
and can Be exploited for real-time imaging, Canc. Res. 77 (2017) 6746e6758,
https://doi.org/10.1158/0008-5472.CAN-17-0930.

[40] J. Nizioł, V. Bonifay, K. Ossoli�nski, T. Ossoli�nski, A. Ossoli�nska, J. Sunner,
I. Beech, A. Arendowski, T. Ruman, Metabolomic study of human tissue and
urine in clear cell renal carcinoma by LC-HRMS and PLS-DA, Anal. Bioanal.
Chem. 410 (2018) 3859e3869, https://doi.org/10.1007/s00216-018-1059-x.

[41] F.a.G. Teulings, H.A. Peters, W.C.J. Hop, W. Fokkens, W.G. Haije, H. Portengen,
B. van der Werf-Messing, A new aspect of the urinary excretion of tryptophan
metabolites in patients with cancer of the bladder, Int. J. Canc. 21 (1978)
140e146, https://doi.org/10.1002/ijc.2910210203.

[42] S. Ganti, S.L. Taylor, K. Kim, C.L. Hoppel, L. Guo, J. Yang, C. Evans, R.H. Weiss,
Urinary acylcarnitines are altered in human kidney cancer, Int. J. Canc. 130
(2012) 2791e2800, https://doi.org/10.1002/ijc.26274.

[43] H.I. Wettersten, A.A. Hakimi, D. Morin, C. Bianchi, M.E. Johnstone,
D.R. Donohoe, J.F. Trott, O.A. Aboud, S. Stirdivant, B. Neri, R. Wolfert,
B. Stewart, R. Perego, J.J. Hsieh, R.H. Weiss, Grade-dependent metabolic
reprogramming in kidney cancer revealed by combined proteomics and
metabolomics analysis, Canc. Res. 75 (2015) 2541e2552, https://doi.org/
10.1158/0008-5472.CAN-14-1703.

[44] R.S. Goldstein, Mechanisms of Injury in Renal Disease and Toxicity, CRC Press
FL, USA, 1994.

[45] A. Arendowski, J. Nizioł, K. Ossoli�nski, A. Ossoli�nska, T. Ossoli�nski,
Z. Dobrowolski, T. Ruman, Laser desorption/ionization MS imaging of cancer
kidney tissue on silver nanoparticle-enhanced target, Bioanalysis 10 (2018)
83e94, https://doi.org/10.4155/bio-2017-0195.

[46] D. Ackerman, S. Tumanov, B. Qiu, E. Michalopoulou, M. Spata, A. Azzam, H. Xie,
M.C. Simon, J.J. Kamphorst, Triglycerides promote lipid homeostasis during
hypoxic stress by balancing fatty acid saturation, Cell Rep. 24 (2018)
2596e2605, https://doi.org/10.1016/j.celrep.2018.08.015, e5.

[47] V. Tugnoli, A. Poerio, M.R. Tosi, Phosphatidylcholine and cholesteryl esters
identify the infiltrating behaviour of a clear cell renal carcinoma: 1H, 13C and
31P MRS evidence, Oncol. Rep. 12 (2004) 353e356, https://doi.org/10.3892/
or.12.2.353.

https://doi.org/10.1158/0008-5472.CAN-17-0930
https://doi.org/10.1007/s00216-018-1059-x
https://doi.org/10.1002/ijc.2910210203
https://doi.org/10.1002/ijc.26274
https://doi.org/10.1158/0008-5472.CAN-14-1703
https://doi.org/10.1158/0008-5472.CAN-14-1703
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref44
http://refhub.elsevier.com/S1387-3806(20)30261-X/sref44
https://doi.org/10.4155/bio-2017-0195
https://doi.org/10.1016/j.celrep.2018.08.015
https://doi.org/10.3892/or.12.2.353
https://doi.org/10.3892/or.12.2.353

	Gold nanostructures - assisted laser desorption/ionization mass spectrometry for kidney cancer blood serum biomarker screening
	1. Introduction
	2. Experimental
	2.1. Participants
	2.2. Materials & methods
	2.3. Preparation of AuNPET target
	2.4. Sample preparation
	2.5. LDI MS experiment
	2.6. Data analysis

	3. Results and discussion
	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


