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Abstract  

Kidney cancer is one of the most frequently diagnosed cancers of the urinary tract in 
the world. Despite significant advances in kidney cancer treatment, no urine specific 
biomarker is currently used to guide therapeutic interventions. In an effort to address this 
knowledge gap, metabolic profiling of urine samples from 50 patients with kidney cancer and 
50 healthy volunteers was undertaken using high-resolution proton nuclear magnetic 
resonance spectroscopy (1H NMR) and silver-109 nanoparticle enhanced steel target laser 
desorption/ionization mass spectrometry (109AgNPET LDI MS). Twelve potential urine 
biomarkers of kidney cancer were identified and quantified using one-dimensional (1D) 1H 
NMR metabolomics. Seven mass spectral features which differed significantly in abundance 
(p<0.05) between kidney cancer patients and healthy volunteers were also detected using 
109AgNPET-based laser desorption/ionization mass spectrometry (LDI MS). This work 
provides a framework to expand biomarker discovery that could be used as useful diagnostic 
or prognostic of kidney cancer progression 

 
 
Keywords: kidney, cancer, mass spectrometry, biomarkers, proton nuclear magnetic 
resonance , urine 
 

 

 

 

 

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0731708520316381
Manuscript_60e9c38cae298d4a3100f85c44fc2d78

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0731708520316381


 

2 

 

1. Introduction 

Kidney cancer is among the 15 most commonly occurring cancers worldwide in terms 
of incidence and mortality in both men and women. More than 400,000 new kidney cancer 
cases and nearly 180,000 deaths were recorded in 2018. Kidney cancer is not a single disease, 
as there exists a number of different types of kidney tumors which differ in histology, 
responses to therapy, and progression to different clinical outcomes. Kidney tumors can be 
benign, indolent, or malignant. Non-cancerous tumors include adenoma, oncocytoma and 
angiomyolipoma (AML). Renal cell carcinoma (RCC) is the most common and malignant 
type of kidney cancer accounting for approximately 90% of all neoplasms arising from the 
kidney. There are three main types of RCC including clear cell (ccRCC), papillary RCC 
(pRCC) and chromophobe RCC (cRCC) that differ in their stage, grade, and cancer-specific 
survival. Subtypes of RCC such as angiomyolipoma (AML), collecting duct carcinoma 
(CDC), or simple renal cyst (SRC) are very rare [1].  

Currently, kidney cancer diagnosis is based on abdominal ultrasound, magnetic 
resonance imaging, or computed tomography; however, more than 60% of RCCs are 
diagnosed incidentally when patients are examined for other reasons. Kidney cancer is one of 
the few cancers whose occurrence is increasing every year. In most cases, RCC progresses 
asymptomatically, and is difficult to detect at an early stage due to the lack of characteristic 
symptoms such as classic triad of visible haematuria, flank pain and palpable abdominal mass 
symptoms [2]. 

Unfortunately, though great efforts have been dedicated in the past decades to identify 
characteristic small molecule indicators of kidney cancer, there are currently no reliable 
biomarkers available to guide more effective therapies, diagnosis, or disease prognosis. 
Therefore, further research and the development of new kidney cancer sensitive biomarkers 
are of great importance, not only to improve prognosis, early detection as well as to monitor 
treatment, but also to enhance our understanding of the molecular processes underlying 
kidney cancer,  using preferably non-invasive methods [3].  

Over the past decades, the use of metabolomics applications to cancer research has 
increased significantly. Analysis of metabolite profiles from non-invasive sources such as 
biofluids is a promising approach for the discovery of valuable biomarkers to enhance our 
abilities to predict cancer progression, screen cancer pathologies, and to assess the 
effectiveness of cancer treatments. Urine is a preferred source of biospecimens for 
metabolomics analysis of kidney cancer due to its close association with disease origin. Urine 
metabolomes provide biochemical fingerprints of systemic changes in organisms, and an 
avenue to identify and characterize potential biomarkers associated with cancer, including 
kidney cancer [4]. The most frequently used techniques for metabolomic analysis of kidney 
cancer have been liquid chromatography-coupled mass spectrometry (LC-MS) [5], gas 
chromatography-coupled mass spectrometry (GC-MS) [6], and 1H nuclear magnetic resonance 
(NMR) spectroscopy [7]. Since kidney cancer is recognized as a metabolomic disease, a 
growing number of studies focusing on the metabolite profiling of tissues [8] and biofluids 
from patients, including plasma [9],  serum [10], and urine [11] have been reported. 
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MS-based methods have been some of the most prominent approaches utilized in 
untargeted metabolomic analyses of urine samples. In 2006, Perround et al. employed 
metabolomics techniques to characterize the urine metabolome of a small group of patients (5 
RCC and 5 control), and to identify potential biomarkers of kidney cancer [12]. A similarly 
small group of RCC patients was examined a year later by the Weiss group, who employed 
three different analytical techniques to broaden the detection and coverage of urinary 
metabolites [13]. In 2011, Kim et al. utilized MS-based metabolomics to evaluate the 
differential levels of compounds present in the urine of 29 kidney cancer patients and 33 
control patients. They found that measuring the differential concentrations of the three 
metabolites gentisate, quinolinate, and 4-hydroxybenzoate could be used successfully to 
distinguish RCC patients from controls [14]. In 2012, Ganti et al. analyzed the urine 
metabolome of 29 RCC and 33 control patients using LC-MS and GC-MS, and found that 
most acylcarnitines were increased in the urine of cancer patients, and that the concentrations 
of these compounds were dependent on both cancer status and kidney cancer grade [11]. In 
2016, Monteiro et al. performed a metabolomic profiling analysis of urine from 42 RCC 
patients and 49 controls using NMR spectroscopy, and found 32 metabolites whose 
significantly altered levels between the two groups [15]. 

NMR-based metabolomic studies of urine samples from RCC patients are rarely 
reported in literature [16,17]. To our knowledge, there are no current studies that have 
combined both NMR and LDI MS approaches to conduct comprehensive analyses of the urine 
metabolome of patients with kidney cancer.  

This work is the first to report on the metabolomics-based profiling of urine samples 
from patients with kidney cancer (n=50) and controls (n=50), using two orthogonal analytical 
methods: high resolution 1H NMR and laser desorption/ionization mass spectrometry with 
109-silver nanoparticle-enhanced steel target (109AgNPET LDI MS) [18]. Results from this 
study have identified interesting small molecule candidate biomarkers, which may be useful 
to discriminate kidney cancer patients from healthy controls based on differential urine 
metabolome profiles.  

 

2. Experimental section 

2.1. Materials and equipment 

 
109AgNPET materials were prepared as described in our previous publication [19]. All 
solvents were of HPLC quality, except for methanol and water (LCMS grade, Fluka).  
 

2.2. Patient characteristics 

 The protocol of this study was approved by local Bioethics Committee at the University 
of Rzeszow (Poland) (permission no. 2018/04/10). Authors confirm that all research was 
performed in accordance with relevant regulations and guidelines. Specimens and clinical 
data from patients involved in the study were collected with informed consent. Urine samples 
were obtained from fifty patients with kidney cancer and 50 age- and sex-matched healthy 
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control subjects, following detailed clinical questioning at the John Paul II Hospital in 
Kolbuszowa (Poland). Laboratory test results (complete blood count, kidney function tests, 
CRP, urine analysis, bleeding profile) were within normal ranges. Urine samples from 50 
patients (20 female, 30 male, age range 36-87, average age 69) with kidney cancer and 50 
healthy control subjects were collected. The majority of patients (n=33) had a disease stage of 
T1, four patients had T2 stages, ten patients had T3 stages, and one patient had a stage of T4. 
In three patients, the stage of the disease could not be determined. Among tumors diagnosed, 
there were 33 clear cell renal cell carcinomas (ccRCC), 4 oncocytomas,  4 angiomyolipomas 
(AML), 2 chromophobe renal cell carcinomas (chRCC), 2 papillary renal cell carcinomas 
(pRCC), 1 collecting duct carcinoma (CDC), 1 simple renal cyst (SRC) and 1 tubulocystic 
renal cell carcinoma (TCRC), classified according to the 2016 WHO Classification of Tumors 

of the Urinary System and Male Genital Organs. Most of the diagnosed cancers were 
malignant (n=41), but few patients (n=7) had benign (non-cancerous) kidney tumors. In this 
study, benign tumors of the kidney included oncocytoma and angiomyolipoma, while other 
types of tumors were considered malignant. In addition, one patient had a lung 
adenocarcinoma metastasis. The pathological and clinical characteristics of the patients are 
presented in supplementary material (Table S1).  
 

2.3. Preparation of urine samples  

 A volume of 10 mL of urine was drawn from each participant. The urine was stored at –
60oC until further use. Prior to NMR analysis, urine samples were thawed at 4°C, then 
centrifuged at 12000xg for 5 min at 4°C to remove cells and other solid materials. A volume 
of 900 μL of acetone was added to 300 μL of resulting supernatants. After vortexing for 1 
min, the solutions were incubated at room temperature for 20 min followed by 30 min at -
20°C, and then centrifuged at 6000xg for 5 min at 4 °C.  Next, 800 μL volumes of clarified 
supernatants were transferred to a new polypropylene tube. The pellets were re-suspended in 
500 µl of acetone-H2O mixture (3:1, v/v) and vortexed vigorously. Samples were subjected to 
centrifugation at 12000xg for 10 min at 4°C. The supernatants from pellet washes were 
combined with the supernatants from the first spin. Finally, from approx. 990 µl of resulting 
samples, 50 µl was taken and used for 109AgNPET LDI MS analysis. The rest of the sample 
was dried to complete dryness using a SpeedVac vacuum concentrator (1 mbar vacuum, 24 
hours), with no heating applied. Dried extracts were re-suspended in 600 µL of NMR buffer 
consisting of 25 mM NaH2PO4/Na2HPO4, 0.4 mM imidazole, 0.25 mM 4,4-dimethyl-4-
silapentane-1-sulfonic acid (DSS) in 90% H2O/10% D2O, pH 7.0. Following re-suspension, 
samples were centrifuged at 21,000 rpm for 1 min to pellet insoluble debris, and then 
transferred to 5 mm NMR tubes for NMR metabolomics analysis.  

2.4. NMR Spectra Acquisition and Preprocessing 

 1D 1H NMR spectra were collected at Montana State University at 298 K (25°C), 
using a Bruker 600 MHz (1H Larmor frequency) AVANCE III solution NMR spectrometer, 
equipped with a SampleJet automatic sample loading system, a 5 mm triple resonance (1H, 
15N, 13C), liquid-helium-cooled TCI NMR cryoprobe, and Topspin software (Bruker version 
3.6). 1D 1H NMR spectra acquisition was performed using the Bruker-supplied excitation 
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sculpting (ES)-based ‘zgesgp’ pulse sequence, and NMR spectra were recorded using 256 
scans, a 1H spectral window of 7211.538 Hz, 64K data points and a dwell time interval of 
69.33 µsec between points, amounting to a spectrum acquisition time of 4.54 s. The recovery 
delay (D1) time between acquisitions was set to 2 s, resulting in a total relaxation recovery 
time of 6.5 s between scans. Chemical shift referencing using the DSS NMR signal and phase 
correction of 1D 1H NMR spectra were conducted using the Topspin software (Bruker version 
3.6), as detailed previously [20]. 
 
 For validation of metabolite annotation, 2D 1H-1H total correlation spectroscopy 
(TOCSY) spectra were acquired for representative samples using the Bruker-supplied 
‘mlevphpr.2/mlevgpph19’ pulse sequences (256 × 2048 data points, 2 s relaxation delay, 32 
transients per FID, 1H spectral window of 6602.11 Hz, 80 ms TOCSY spin lock mixing 
period). 2D 1H-1H TOCSY spectra were processed using Topspin software (Bruker version 
3.6). 
 

2.5. NMR Data Analysis 

 Further processing of 1D 1H NMR spectra and metabolite profiling analyses were 
conducted using the Chenomx NMR Suite software (version 8.1; Chenomx Inc., Edmonton, 
Alberta, Canada). Baseline correction of NMR spectra following import of preprocessed ‘1r’ 
NMR spectral files into Chenomx software was performed using the automatic cubic spline 
function in Chenomx, and subsequent manual breakpoint adjustment to obtain a flat, well-
defined baseline, following recommendations from Chenomx application notes and 
previously reported methods [20,21]. 1H chemical shifts were referenced to the 0.0 ppm DSS 
signal, and the 1H NMR signals arising from imidazole were used to correct for small 
chemical shift changes due to slight variations in sample pH. Metabolite identification and 
quantification were performed by fitting 1D 1H spectral splitting patterns, chemical shifts, and 
spectral intensities to reference spectral patterns of small molecules, using the Chenomx small 
molecule spectral database for 600 MHz (1H Larmor frequency) magnetic field strength 
NMR, and manually peak-based fits, where adjustments were made to achieve optimal 
spectral pattern fits for compound peak cluster location and intensity. The internal DSS 
standard (0.25mM) was used for metabolite quantitation.  
 
2.6. MS Sample Preparation 

 0.3 µl of each sample was placed on a 109AgNPET and allowed to dry at room 
temperature, followed by target insertion into a MALDI ToF/ToF mass spectrometer. 
 
2.7. MS Spectra Acquisition and Preprocessing 

 Laser desorption ionization mass spectrometry imaging (LDI-MSI) experiments were 
performed using a Bruker Autoflex Speed time-of-flight mass spectrometer in positive-ion 
reflectron mode. The apparatus was equipped with a SmartBeam II 1000 Hz 355 nm laser, 
with a laser impulse energy of approximately 100−190 μJ, laser repetition rate of 1000 Hz, 
and deflection set on m/z lower than 80, with a m/z range of 80−2000 Da. Spectrum for each 
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extract contained data from 20k laser shots with a default random walk applied (random 
points with 50 laser shots). All spectra were calibrated with the use of silver ions (109Ag+ to 
109Ag10

+). The first accelerating voltage was held at 19 kV, and the second ion source voltage 
was held at 16.7 kV. Reflector voltages used were 21 kV (the first) and 9.55 kV (the second). 
FlexAnalysis 4.0 software was used for data processing and analysis. 
 

2.8. Multivariate statistical analysis 

 Metabolite data was log-transformed and auto-scaled prior to statistical analysis, which 
was accomplished using the MetaboAnalyst software 4.0 [22].  
Firstly, a total of 100 1H NMR and 100 LDI MS of recorded spectra were subjected to an 
unsupervised multivariate statistical analysis, Principal Component Analysis (PCA), to reveal 
whether distinct urine metabolic profiles can separate kidney cancer from healthy controls, 
and to detect possible outliers. The extent of the separation between these two groups was 
further examined using a supervised multivariate statistical analysis, Partial Least Squares 
Discriminant Analysis (PLS-DA).  
The quality of PLS-DA model was described by predictability of the model (Q2), goodness of 
fit (R2), and accuracy (data permutation tests). Variable Importance in the Projection (VIP) 
plots were generated to focus on metabolites whose level changes most significantly 
contributed to the group separation. Metabolites with VIP scores > 1 were considered to be 
significant contributors, and potential biomarkers to distinguish kidney cancer patients from 
healthy controls. In this work, 10-fold cross validations were used to define the number of 
latent variables (PLS components) in the model. To test the accuracy of multivariate models, 
and minimize the possibility that the observed separation in the PLS-DA is due to chance 
(p<0.05), permutation tests were performed using 2000 repetition steps. Statistical 
significance of metabolite level differences was assessed using unpaired parametric t-test with 
Mann–Witney and Bonferroni correction. P values and false discovery rates (FDR; q-value) 
less than 0.05 were considered statistically significant. Additionally, receiver operating curve 
(ROC) analyses were conducted to evaluate the diagnostic value of selected metabolites.  
Standard chemometrics tools such as 2D PCA and PLS-DA analysis were also used to assess 
metabolic profile similarities and differences between cancer types (malignant and benign) 
and grades (grade 1, 2 and 3). An approximation was used whereby all malignant renal tumors 
like ccRR, chRCC, pRCC, CDC, SRC and benign kidney tumors (oncocytoma and AML) 
were grouped together, anticipating that changes in urine metabolite levels in tumor types 
would follow similar trends. The metabolic pathways associated with selected potential 
biomarkers of kidney cancer were evaluated by MetaboAnalyst software (version 4.0) using 
Homo sapiens (human) as library.  
 

3. Results and discussion 

3.1. Distinguishing between kidney cancer and control samples by 1H NMR 

 In the current study, we recorded high-resolution 1D 1H NMR spectra of 50 urine 
metabolite extracts from patients suffering from kidney cancer and from 50 healthy 
volunteers. Figure 1 presents a representative one-dimensional (1D) 1H NMR spectrum of 
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metabolite mixtures extracted from a urine sample of a kidney cancer patient or a healthy 
control. In total, 52 metabolites were identified and quantified in each urine sample using 1H 
NMR spectroscopy for metabolite profiling. Visual comparison of the NMR spectra revealed 
significant differences in individual metabolite levels between the urine samples of kidney 
cancer patients and healthy controls. Representative 1H NMR spectra of serum samples from 
kidney cancer patients are shown in Figure 1, along with metabolites identified (Figure 1). 

 
 Figure 1. Characteristic 1D 1H NMR spectrum of a protein-free metabolite extract mixture 

obtained from a urine sample of a kidney cancer patient, recorded on MSU 600 MHz (14 
Tesla) solution NMR spectrometer. NMR signals assigned to specific metabolites using the 
Chenomx sofware are labeled. X-axis denotes 1H chemical shift (ppm) and y-axis indicates 
relative intensity of the NMR signals. 
 
   
Univariate and multivariate statistical analyses of urinary metabolite patterns were employed 
to assess the discrimination accuracy between RCC and controls. These analyses also enabled 
to identify several significantly elevated levels of polar small molecules in kidney cancer 
(Supplementary material Table S1). Metabolite concentrations obtained by NMR were 
analyzed using principal component analysis (PCA) to evaluate whether the different patient 
versus control groups could be separated based on distinct metabolite profiles. The resulting 
3D PCA scores plot (Figure 2 A) indicate that the metabolite profiles of cancer patients are to 
a large extent distinct from those of healthy controls, with PC1 and PC2 accounting for 35.4% 
and 8% of the variance, respectively. Group separations were further examined using 
supervised Partial Least Square-Discriminant Analysis, which revealed a clear separation 
between cancer patients and healthy controls, as shown in the 3D-PLSA scores plot of Figure 
2B. 
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Figure 2. 2D-PCA scores plot generated from the NMR data of the urine cancer (red) and 
control (green) samples (A). 2D PLS-DA analysis of urine metabolite profiles identified by 
1H NMR (B). VIP scores ranking the most important metabolites (VIP > 1) that contributes to 
the separation in the PLS-DA analysis between cancer and control samples for component 1 
(C) and for component 2 (D). 
 
 Good discrimination was observed between patients with kidney cancer and healthy 
control (R2=0.85, Q2=0.81, accuracy=0.99), revealing significant differences in urinary 
metabolic profiles (Figure S1, Supplementary material). Analysis of the variable importance 
in projection (VIP) scores of the PLS-DA model, combined with statistical test analysis (p 
values <5xE-4) indicate twenty metabolites responsible for differences (Figure 2, S1 and 
Table 1 in Supplementary material). In details, PLS-DA comparisons revealed higher level of 
trimethylamine and lower levels of myo-inositol, creatine, sucrose, trigonelline, N-
dimethylglycine, 4-hydroxyphenylacetate, 2-furoylglycine, homovanillate, glycolate, 
Hippurate, and betaine when comparing the urine metabolite profiles of the cancer patients 
compared to healthy controls (Figure 2C).  
 Twenty metabolites were found to be statistically significant for discriminating between 
cancer patients and healthy controls, according to the criterion of a VIP value > 1, and FDR 
and adjusted p-value below 0.05.  Metabolite profiles and concentration data for the complete 
set of 52 metabolites with mean concentration values and all relevant statistical parameters are 
reported in Table S1 (Supplementary material). Next, a multivariate Receiver Operating 
Characteristics (ROC) curve analysis was performed based on the differing concentrations of 
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these twenty selected metabolites to generate a better predictive model to discriminate the 
urine metabolite profiles of kidney cancer patients compared to controls. In our study, 12 
significant metabolites with an area under the curve (AUC) threshold above 0.75 included 
myo-inositol, creatine, sucrose, trigonelline, 2-furoylglycine, urea, 4-hydroxyphenylacetate, 
alanine, homovanillate, glycolate, N-dimethylglycine and isoleucine (Table 1). 
 

Table 1. Summary of fold concentration changes of potential metabolite markers, as revealed 
from 1H NMR spectral analyses of urine metabolite samples from kidney cancer patients and 
healthy control volunteers   

ap-value determined from Student’s t-test with Welch’s correction; bcalculated from the 
concentration mean values of cancer patients to control; G – grade of kidney cancer 

 

 Among these metabolites, the best ROC analysis results with the highest significance 
were achieved for the metabolite myo-inositol (AUC = 0.965, specificity= 1 and a sensibility 
= 1), followed by creatine (AUC = 0.911, specificity= 0.8 and a sensibility = 0.9), sucrose 
(AUC = 0.86, specificity=0.8 and a sensibility = 0.9), trigonelline (AUC = 0.856, specificity= 
0.8 and a sensibility = 0.8) and 2-fluoroglycine (AUC = 0.853, specificity= 0.8 and a 
sensibility = 0.8). The range of concentrations for these individual metabolites in the urine 
samples of cancer patients compared to healthy controls is shown in Figure 3.  
 

No. Metabolite AUC VIP P-valuea 

Fold changeb 

Cancer 

vs. 

Control 

Benign  

vs. 

Control 

Malignant 

vs. 

Control                

G1                   

vs.  

Control                  

G2                 

vs.                      

Control  

G3               

vs.                      

Control  
1 myo-Inositol 0.96 2.60 4.51E-40 0.03 0.00 0.03 0.00 0.02 0.00 
2 Creatine 0.91 1.98 8.86E-16 0.19 0.24 0.18 0.15 0.23 0.14 

3 Sucrose 0.86 1.96 2.05E-15 0.29 0.19 0.28 0.07 0.34 0.38 

4 Trigonelline 0.86 1.67 1.20E-10 0.22 0.19 0.23 0.28 0.23 0.18 

5 2-Furoylglycine 0.85 1.49 2.01E-08 0.32 0.38 0.30 0.52 0.27 0.21 

6 Urea 0.83 1.33 9.96E-07 0.56 0.54 0.57 0.72 0.57 0.54 

7 4-Hydroxyphenylacetate 0.82 1.52 1.02E-08 0.31 0.14 0.33 0.55 0.36 0.17 

8 Alanine 0.81 1.09 8.20E-05 0.43 0.59 0.40 0.39 0.43 0.41 

9 Homovanillate 0.81 1.36 4.48E-07 0.42 0.38 0.44 0.29 0.53 0.45 

10 Glycolate 0.80 1.17 2.11E-05 0.51 0.59 0.50 0.45 0.46 0.61 

11 N-Dimethylglycine 0.80 1.61 9.74E-10 0.47 0.49 0.47 0.43 0.46 0.49 

12 Isoleucine 0.76 1.23 7.25E-06 0.55 0.86 0.51 0.27 0.50 0.68 
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Figure 3. ROC curve analysis for potential biomarkers of kidney cancer predicted from 
univariate analysis. The left side of each panel indicates ROC curve for a particular 
metabolite, with 95% confidence interval (shadowed) and the solid red dot indicating the 
optimal cut-off associated with sensitivity and specificity values. The right side of each panel 
depicts the range of concentrations of each specific metabolite measured in the urine samples 
of kidney cancer patients and healthy controls. The horizontal red line in the graphs indicates 
the cut-off point.  

 
 
Twelve metabolites exhibiting the highest AUC > 0.75 in the ROC curve generated (Figure 
S2, Supplementary material) were manually selected to construct a classifier in the random 
forest algorithm. An AUC of 0.986 with a confidence interval (CI) from 0.948 to 1 indicates a 
great sensitivity and specificity. This result suggests that the twelve specific metabolites 
presented above have the best predictive ability and could be used as diagnostic biomarkers to 
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distinguish urine samples from kidney cancer patients and control groups with high specificity 
and sensitivity.  

3.2. Distinguishing between grade and type of kidney cancer in 1H NMR dataset 

 1H NMR metabolomics analysis of urine samples was further employed to evaluate 
whether distinct metabolic trends could distinguish between the different grades (grade 1-3) 
and types (benign and malignant) of kidney cancer tumors, and separate samples from cancer 
patients from the healthy control group. PCA scores plots showed practically no 
discrimination of benign from malignant and grade 1 from grade 2 and 3 (data not shown).  
PLS-DA score plots shown in Figure 4A also did not reveal any significant trend correlated to 
tumor type. This suggests that metabolic patterns for those groups are not easily separable by 
just simply assessing differences in polar metabolite levels in urine samples. However, we 
obtained a good discrimination between these groups and controls, as indicated by the VIP 
score plots shown in Figures 4D and F. Comparing separately controls and cancer groups of 
varying type of tumors (controls vs benign and controls vs malignant) using PLS-DA analysis 
revealed a good discrimination between these groups (Figure 4). Quality factors for those 
models amounted to Q2>0.77, R2>0.85 and accuracy >0.98, with p values based on 
permutation tests smaller than 0.05. Detailed results are shown in supplementary material 
Figure S3. A variable importance plots revealed that myo-inositol and sucrose were significant 
contributors to the separation between controls vs malignant and controls vs benign. 
Trimethylamine presented the second biggest VIP value for the model when comparing 
benign types of cancer to healthy controls.  
 Analysis revealed higher differences of isoleucine and alanine levels in the model with 
malignant cancer compared to model with benign type of cancer (Table 1). This suggests that 
examining the differential levels of these metabolites may be an effective way to detect 
malignancy of the tumor in urine samples. An opposite trend was observed for 4-
hydroxyphenylacetate.  
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Figure 4. 2D-PLS DA analysis of NMR metabolite data of urine samples; (A) controls (green) 
compared with benign (red) and malignant (blue) patients and (B) the corresponding 
metabolite ranking according to VIP scores; (C) controls (green) compared with malignant 
(red) patients and (D) the corresponding metabolite ranking according to VIP scores; (E) 
controls (green) compared with benign (red) patients and (F) the corresponding metabolite 
ranking according to VIP scores; 
 
 PLS-DA score plots shown in Figure 5 reveal a good discrimination between controls 
and patients with different grade of kidney cancer (controls vs G1, controls vs G2 and 
controls vs G3). All three models met quality criteria (Q2>0.72, R2>0.90 and accuracy >0.99), 
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with p values based on permutation tests smaller than 0.05. Details of the model validation 
analyses are included in supplementary material Figure S4. Variable importance in projection 
(VIP) scores plots revealed that major metabolites responsible for group discrimination in all 
these models consisted of myo-inositol and creatine. 
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Figure 5. PLS DA analysis of NMR data of urine samples; (A) controls (red) compared with 
G1 (green) patients and; (C) controls (green) compared with G2 (red) patients; (E) controls 
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(green) compared with G3 (red) patients.  Metabolite rankings according to VIP scores are 
shown in insets B, D and F for A, B and C analyses respectively. 
 
 
Interestingly, analyses performed herein resulted in the identification of several metabolites 
that differentiate between cancer grades as shown in Table 2. Analysis of metabolite 
concentration changes revealed increasing levels of sucrose, glycolate, N-dimethylglycine and 
isoleucine with increasing tumor grade. The opposite trend was observed for trigonelline, 2-
fluoroglycine, urea and 4-hydroxyphenylacetate (Table 1). All these observations confirmed 
that types and grades of kidney cancer have an influence on group discrimination, but only 
when cancer types and grades are analyzed separately from controls. 
 
3.3. Metabolic profile of urine in kidney cancer with 109AgNPET LDI MS 

 In this study, LDI MS-based approach was also applied to investigate the urine 
metabolic profiles of patients with kidney cancer. All spectra were recorded in positive ion 
mode due to high efficiency of cationization with the use of cationic nanoparticles. A number 
of 452 common features were detected in the urine samples of 50 patients with kidney cancer 
and 50 healthy controls, using 109AgNPET LDI mass spectral analyses. The peak intensity 
data from LDI MS spectra was subjected to multivariate data analysis, and 2D-PCA and 2D-
PLS-DA score plots were generated for the entire data set. 2D-PCA scores plots for mass 
spectral features showed poor discrimination of kidney cancer patients from controls (Figure 
6A). Results from PLS-DA analysis as shown in Figure 6B highlight a clear separation 
between those two groups (p = 0.029, Figure S5, Supplementary material) with 120 features 
contributing to group separation (VIP > 1).  
 



 

15 

 

A B

C

Component 1 (5.8%)

C
o

m
p

o
n

e
n

t 
2
 (

3
.2

%
)

0 5 10-5-10

0
5

-1
0

PC 1 (13.6%)

P
C

 2
 (

6
.6

%
)

0 10 20-10-20

0
1

0
-1

0
-1

5
-5

5

115.985

241.011

111.986

715.059

410.152

495.062

243.824

101.012

409.147

409.147

99.011

426.128

496.068

240.814

149.960

VIP scores

2.2 2.4 2.6 2.8 3.0

High

Low

Cancer

Control

Cancer

Control

-5

3.2

 
Figure 6. (A) 2D-PCA scores plot of kidney cancer and control group based on 109AgNPET 
LDI MS metabolic profiles. (B) 2D-PLS-DA scores plot based on 109AgNPET LDI MS. (C) 
Key first 15 MS features according to the VIP-parameter (>1). The colored boxes on the right 
indicate the relative concentrations of these metabolites in each group. 
 
PLS-DA analyses of the LDI-MS metabolic profiles clearly show separated clusters in the 
2D scores plots between the urine of kidney cancer patients and controls (Figure 6B) 
suggesting that the 109AgNPET LDI MS-based urine metabolomics model can be used to 
identify the metabolic differences that separate these two groups. Validation and permutation 
tests (Figure S5, Supplementary material) showed that the PLS-DA model was reliable (Q2 
=0.52, and R2 = 0.90; accuracy=0.87) and that the observed separation between the two 
groups is significant (p=0.029) (Figure S5, Supplementary material). To assess the potential 
of these m/z features to represent robust biomarkers of cancer phenotypes, VIP scores plots 
were employed to assess degree of importance (Figure 6C). Based on the individual VIPs, q- 
and p-values, 43 m/z features (m/z values) were found to be highly discriminatory between 
selected groups. Mean abundances of these significantly different m/z variables identified in 
the urine are reported in Table S4 (Supplementary material). 
 
  



 

16 

 

Table 2. Selected m/z values found in 109AgNPET LDI MS spectra of urine from kidney 
cancer patients and control volunteers. 

aExperimental monoisotopic neutral mass; bUnknown; cp-value determined from Student’s t-
test with Welch’s correction; dfold change between kidney cancer and healthy controls 
calculated as abundance mean value of cancer group divided by control group. 
 

The m/z features were then used to search against four metabolite databases: HMDB, 
MetaCyc, LipidMaps, and Metlin to retrieve metabolites with similar masses. Unfortunately, 
only four urine features were putatively assigned to known metabolites. All of MS spectral 
features identified as being potentially good indicators of kidney cancer are reported in Table 
2. Selected m/z values were further submitted to prediction model construction. ROC analysis 
indicated that seven m/z features have a strong diagnostic value to discriminate kidney cancer 
from controls, with AUC values above 0.75 (Table 2). Among the features, the most 
significant was observed for m/z 241.011, with an AUC value of 0.768, sensitivity of 0.7, and 
specificity of 0.7. The AUC resulting from the random forest algorithm was 0.83 within the 
range of 0.73 to 0.90 at the 95% confidence interval (CI) for 100-fold cross-validation (Figure 
S6, Supplementary material). The distribution in abundance of these mass spectral features in 
control and cancer urine samples is shown in Figure 7. 

 

No. m/za Putative metabolite Adduct type 
Mass 
error 
[ppm] 

AUC VIP P-valuec FCd 

1 241.011 Succinylacetoacetate  [C8H10O6+K]+ 0.4 0.76 2.62 4.44E-06 0.44 

2 425.120 Cys-Gly-Ser-His [C14H22N6O6S+Na]+ 3.2 0.77 1.96 8.24E-04 0.46 

3 495.062 His-Gly-Ser-Ser [C14H22N6O7+109Ag]+ 5.7 0.77 2.49 1.50E-05 0.51 

4 496.068 Met-Thr-His [C15H25N5O5S+109Ag]+ 12.4 0.77 2.34 4.93E-05 0.46 
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Figure 7. ROC curve analysis for mass spectral features representing potential biomarkers of 
kidney cancer. The left side of each panel represents the ROC curve of the select mass 
spectral features, with 95% confidence interval (shadowed) and the solid red dot indicates the 
optimal cut-off with the associated sensitivity and specificity values. The right side depicts 
abundance distribution in control and cancer samples with optimal cut-off as a horizontal 
dashed line.  
 

Pathway analysis of biomarkers 

The metabolic pathway analysis was applied to evaluation of the biological significance of 
potential biomarkers selected in the present study by significant changes (p-value< 0.05, 
FDR< 0.05 and VIP >1) using MetaboAnalyst 4.0 platform. The results demonstrated that 
four metabolic pathways, including galactose, glycine, serine and threonine metabolism, 
tyrosine metabolism and aminoacyl-tRNA biosynthesis were filtered out as the most 
important pathways related with the metabolic disturbances in patients with kidney cancer 
(Figure 8). 
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Figure 8. Summary of pathway analysis based on Kyoto Encyclopedia of Genes and Genomes 
(KEGG). A circle of darker color indicates a greater ‑log(p) value, and a circle of larger size 
indicates a greater pathway impact value. 

Discussion 

 Body fluids such as blood and urine can be collected in a minimally invasive way for 
testing and thus are an excellent source of metabolite material. As shown in most diseases, 
changes in body metabolism are reflected in metabolite level changes of blood and urine.  
 In the current study, 1H-NMR and LDI-MS-based approaches, together with 
multivariate statistical analysis, were applied to examine the urinary metabolome of kidney 
cancer patients and to identify potential diagnostic markers of this type of cancer. All selected 
potential urine biomarkers for kidney cancer have been compared to the previous reported 
studies in Table 3. 
 
Table 3. Urine metabolites as potential biomarkers of kidney cancer finding in the current study 
compare to the previous reported studies 

Name of metabolites 

Sample Size 

Technique 

Tumor vs. Control 

References number 
Total Tumor Control Trenda 

Fold 

change 

2-Furoylglycine 

n=100 n=50 n=50 1H NMR  ↓ 0.32 Our results 

n=129 n=61 n=68 LC-LTQ-Orbitrap MS ↑ 2.09 Zhang et al. [23] 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

4-Hydroxyphenylacetate 

n=100 n=50 n=50 1H NMR  ↓ 0.31 Our results 

n=91 n=42 n=49 1H NMR ↓ - Monteiro et al. [15]  

n=10 n=5 n=5 GC-TOF–MS ↓ 0.80 Perroud et al. [12]  

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

Alanine 
n=100 n=50 n=50 1H NMR  ↓ 0.43 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [24]  
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n=78 n=49 n=29 1H NMR ↑ - Ragone et al. [17] 

Creatine 

n=100 n=50 n=50 1H NMR  ↓ 0.19 Our results 

n=91 n=42 n=49 1H NMR ↓ - Monteiro et al. [15] 

n=62 n=29 n=33 UPLC MS/MS ↓ 0.90 Ganti et al. [11] 

n=78 n=49 n=29 1H NMR ↑ - Ragone et al. [17] 

n=62 n=29 n=33 UPLC-MS/MS ↑ 1.14 Kim et al. [14] 

Cys-Gly-Ser-His n=100 n=50 n=50 109AgNPET LDI MS  ↓ 0.46 Our results 

Glycolate n=100 n=50 n=50 1H NMR  ↓ 0.51 Our results 

His-Gly-Ser-Ser n=100 n=50 n=50 1H NMR  ↓ 0.51 Our results 

Homovanillate 
n=100 n=50 n=50 1H NMR  ↓ 0.42 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et. al.  

Isoleucine 

n=100 n=50 n=50 1H NMR  ↓ 0.55 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

n=91 n=42 n=49 1H NMR ↑ 13.5 Monteiro et al. [15] 

Met-Thr-His n=100 n=50 n=50 1H NMR  ↓ 0.46 Our results 

myo-Inositol 

n=100 n=50 n=50 1H NMR  ↓ 0.03 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

n=10 n=5 n=5 GC-TOF–MS ↑ 11.50 Perroud et al. [12]  

N-Dimethylglycine 
n=100 n=50 n=50 1H NMR  ↓ 0.47 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

Succinylacetoacetate n=100 n=50 n=50 1H NMR  ↓ 0.44 Our results 

Sucrose 

n=100 n=50 n=50 1H NMR  ↓ 0.29 Our results 

n=10 n=5 n=5 GC-TOF–MS ↓ 0.70 Perroud et al. [12]  

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 

Trigonelline 
n=100 n=50 n=50 1H NMR  ↓ 0.22 Our results 

n=91 n=42 n=49 1H NMR ↓ - Monteiro et al. [15] 

Urea 
n=100 n=50 n=50 1H NMR  ↓ 0.53 Our results 

n=62 n=29 n=33 UPLC-MS/MS ↓ - Kim et al. [14] 
aMetabolites with“↑ /↓ ” means increased/decreased; GC-TOF–MS - gas chromatography/time-of-flight mass 

spectrometry;  LC-LTQ-Orbitrap MS - liquid chromatography coupled with electrospray ionization hybrid linear trap 

quadrupole-Orbitrap mass spectrometry; UPLC-MS/MS - ultrahigh performance liquid chromatography/tandem mass 

spectrometry 

 

 
 Using 1D 1H NMR metabolite profiling, we identified 12 metabolites whose level changes 
were discriminatory and could be used to differentiate between cancer patients and healthy 
controls, in a statistically significant manner. Interestingly, all of them were found in lower 
concentrations in the urine of patients with RCC compared to controls. An explanation for this 
phenomenon may be the impairment of normal kidney function by cancer, which reduces the 
excretion of metabolites into the urine. LDI-MS results suggest that seven m/z values could be 
used as diagnostic variables enabling the distinction between kidney cancer and the control 
groups with high specificity and sensitivity. 
 PCA, PLS-DA and random forest models were employed for the statistical analysis of 
the NMR and MS metabolomics data recorded. The greatest metabolite contribution to the 
PLS-DA models, expressed by VIP scores parameters, belongs to 4 substances: myo-inositol, 
creatine, sucrose, and trigonelline. These results are consistent with the study conducted by 
Popławski et.al, who also showed reduced levels of myo-insoitol, sucrose, urea, glycine and 
isoleucine in patients with RCC [25]. It is noteworthy that the mentioned authors analyzed 
concentration of metabolites in renal tissue, supporting the notion that changes in the 
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metabolism of kidney cells and tissues are reflected in the metabolite profiles of urine samples 
of cancer patients. 
 Highest AUC values - 0.96, 0.91, 0.86 and 0.86, which provide a measure of the test’s 
ability to discriminate between healthy and cancer patients, corresponded to myo-inositol, 
creatine, sucrose and trigonelline, respectively. Those 4 metabolites were also characterized 
by the highest VIP score and lowest fold change.  
 In this study, a metabolite that best discriminated between cancer and control urine was 
myo-inositol. This compound mediates cell signal transduction and is a precursor of 
secondary messengers including inositol triphosphate and phosphatidylinositol. Kidney is the 
primary site of myo-inositol metabolism, where it is transformed into D-glucuronate by myo-
inositol oxygenase [26]. We demonstrated that the mean level of myo-inositol is lower in the 
urine of cancer patients with RCC (FC=0.03), and that this metabolite most significantly 
discriminates between cancer and control (AUC=0.96). Down-regulation of inositol 
metabolism has been associated with the pathogenesis of various diseases, including cancer. 
Myo-inositol is suggested to exert anticancer activity by inhibition of the PI3K/Akt/mTOR 
pathway, which is a target for RCC therapy using mTOR inhibitors (temsirolimus, 
everolimus) [27].  
 Another metabolite which was found in lower concentration in the urine of cancer 
patients compared to controls is creatine. Creatine is primarily synthesized in the kidneys, and 
lower levels may be an indication of the altered ability of kidney cancer patients to synthesize 
this compound. In muscles, creatine is converted into creatinine, which is then excreted in the 
urine. Serum creatinine is a major marker of renal function. Muscle creatine plays a major 
role in a cellular energetic turnover which is achieved by transfer of the phosphate group of 
phosphocreatine to ADP to generate ATP. Our results are consistent with the study by 
Monteiro et. al. [15], which has suggested that reduced excretion of creatine in urine may be 
linked to reduced biosynthesis of guanidinoacetate, which is an intermediate of this pathway, 
and considered the rate-limiting step of creatine synthesis. Apart from creatinine, another 
important marker of kidney damage is urea. We observed reduced levels of urea in the urine 
of RCC patients, suggesting that these individuals may have impaired ability to excrete excess 
nitrogen via the urea cycle.  
 Similarly, to our study, Monteiro et. al. reported a decreased level of trigonelline in the 
urine of cancer patients. Trigonelline is an alkaloid, plant hormone, found in many plants 
including coffee beans. It is also synthesized endogenously by methylation of niacin (vitamin 
B3). Lower trigonelline levels may thus be due to disturbances in nicotinate and nicotinamide 
metabolism. Moreover, Ragone et. al. reported that urine levels of creatine and trigonelline 
are lower in RCC patients before nephrectomy compared to the same patients after removing 
the tumor [28]. These observations are most likely due to the removal of the diseased kidney, 
which leads to reduced excretion of polar metabolites. 
 Another group of metabolites whose concentrations differ in the urine of kidney cancer 
patients compared to healthy controls is glycine and its derivatives. Glycine is a conditionally 
essential amino acid to the human diet, as it can be synthesized from serine. However, glycine 
biosynthesis is not sufficient to meet cellular metabolic needs, as it is involved in one-carbon 
metabolism (folate and methionine cycles) and generates precursors for various metabolic 
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pathways including lipids, nucleotides and proteins biosynthesis [29].  We observed lower 
concentrations of 2-furoylglycine (2-FG) and N-dimethylglycine (DMG) in the urine samples 
of RCC patients. DMG is an intermediate product of choline conversion to glycine, and an 
important intermediate of glycine metabolism. Monteiro et. al. reported a decreased level of 
glycine and dimethylglycine and an increased level of furoylglycine in the urine samples of 
cancer patients compared to those of healthy control [15]. Other amino acids whose 
concentrations are decreased in the urine of RCC patients include alanine and isoleucine. 
Reduced excretion of amino acids and their derivatives in urine may be caused by their use as 
precursors by rapidly dividing cancer cells, which use amino acids as substrates to synthesize 
new cellular components. 
 Using 109AgNPET LDI MS metabolite profiling, we putatively identified 4 metabolites 
whose levels were significantly changed in cancer patients and healthy controls. In this study 
we observed decreased abundance of 3 peptides in the urine of the patients with renal cancer: 
Cys-Gly-Ser-His, His-Gly-Ser-Ser and Met-Thr-His. Numerous studies have shown the 
important role of amino acids metabolism in cancerogenesis. They are substrates for the 
synthesis of proteins, lipids, nucleotides and purines. Moreover, they are involved in 
gluconeogenesis and in the citric acid cycle, which is essential for cellular energetic turnover. 
[30]. Therefore, fast proliferating cancer cells have high demand for amino acids. 
Aforementioned tri and tetrapeptides contain histidine in their composition. It is an essential 
amino acid, thus cannot be synthesized in the human body and repletion is fully dependent on 
diet and bacterial microbiota in the intestines. This may explain decreased abundance of 
histidine-based polypeptides in the urine of the patients with RC, in comparison to control. 
Another metabolite downregulated in the urine of the patients with RCC is 
succinylacetoacetate. It belongs to the class of medium-chain keto acids. Elevated 
concentration in urine is observed in tyrosinemia type I, a rare genetic disorder of the tyrosine 
metabolism. It is a result of mutations in the both copies of the gene coding 
fumarylacetoacetate hydrolase (FAH) - enzyme that catalyzes conversion of 
fumarylacetoacetate to fumarate and acetoacetate. Absence of this enzyme results in 
accumulation of succinylacetoacetate and succinylacetone which are excreted in the urine. We 
observed decreased concentration of succinylacetoacetate in the urine of patients with RCC.  
 
 
 
4. Conclusion 

In present study, we evaluated the feasibility of using potential urine biomarkers to 
distinguish between kidney cancer patients and healthy controls. Metabolomics studies of 
polar metabolite profiles present in urine and based on high-resolution 1H NMR and 
109AgNPET LDI MS, coupled with multivariate statistical analysis (PLS-DA), revealed 
candidate diagnostic metabolome differences between urine of patients with kidney cancer 
and healthy people. Altered levels of several urine metabolites were found to be significant 
and valuable discriminators of kidney cancer compared to healthy controls. Using a 1H NMR 
metabolomics approach, twelve common metabolites were found to discriminate kidney 
cancer patients from healthy controls, and consisted of myo-inositol, creatine, sucrose, 
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trigonelline, 2-furoylglycine, urea, 4-hydroxyphenylacetate, alanine, homovanillate, glycolate, 
N-dimethylglycine and isoleucine. LDI MS analysis revealed an additional seven mass 
spectral features that could potentially be valuable biomarkers, four of which were putatively 
identified as specific metabolites.  Several important endogenous compounds, whose levels 
were altered between patients and controls and which have interesting bioactive properties 
and pharmacological potential were discussed.  The 1H NMR based metabolomic approach 
was also successfully applied to discriminate between different types and grades of kidney 
cancer, separately from healthy controls. Lastly, this study has revealed that both NMR and 
MS have the potential to identify informative urine biomarkers of kidney cancer.  Monitoring 
changes in urine metabolite levels could become a valuable avenue to screen and track kidney 
cancer disease progression, in a less invasive way to what is currently used to diagnose and 
follow kidney cancer patients’ recovery from treatment. 
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